A049812
a(n)=number of Farey fractions of order n that are <=1/8; cf. A049805.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 25, 27, 29, 31, 34, 35, 38, 40, 43, 45, 49, 50, 54, 56, 59, 61, 66, 68, 73, 76, 79, 82, 87, 89, 95, 97, 101, 104, 110, 112, 117, 120, 125, 129, 136, 138
Offset: 1
-
Farey[n_] := Union[Flatten[Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; f[n_] := Length@ Select[ Farey@ n, # <= 1/8 &]; Array[f, 60] (* Robert G. Wilson v, Nov 14 2012 *)
A049813
a(n)=number of Farey fractions of order n that are <=1/9; cf. A049805.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 27, 30, 31, 34, 36, 38, 40, 43, 44, 48, 50, 53, 55, 59, 60, 64, 66, 69, 72, 77, 79, 84, 86, 90, 93, 98, 100, 105, 108, 112, 115, 121, 122
Offset: 1
-
Farey[n_] := Union[Flatten[Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; f[n_] := Length@ Select[ Farey@ n, # <= 1/9 &]; Array[f, 60] (* Robert G. Wilson v, Nov 14 2012 *)
A049814
a(n)=number of Farey fractions of order n that are <=1/10; cf. A049805.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 30, 32, 34, 36, 39, 40, 43, 45, 47, 49, 53, 54, 58, 60, 63, 65, 69, 70, 74, 76, 80, 83, 88, 90, 94, 97, 101, 104, 109, 110
Offset: 1
-
Farey[n_] := Union[Flatten[Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; f[n_] := Length@ Select[ Farey@ n, # <= 1/10 &]; Array[f, 60] (* Robert G. Wilson v, Nov 14 2012 *)
A359694
Irregular table read by rows: T(n,k) is the number of k-gons, k>=3, in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
Original entry on oeis.org
2, 10, 2, 70, 24, 218, 160, 4, 1254, 1068, 148, 16, 2254, 2414, 252, 26, 10082, 11760, 1980, 266, 12, 21410, 25958, 5096, 648, 36, 4, 53422, 68208, 14360, 1980, 168, 20, 86986, 118922, 24028, 3056, 248, 12, 0, 2, 255678, 346676, 84344, 12774, 1132, 110, 4, 2, 365674, 493530, 119820, 18600, 1624, 112, 4
Offset: 1
The table begins:
2;
10, 2;
70, 24;
218, 160, 4;
1254, 1068, 148, 16;
2254, 2414, 252, 26;
10082, 11760, 1980, 266, 12;
21410, 25958, 5096, 648, 36, 4;
53422, 68208, 14360, 1980, 168, 20;
86986, 118922, 24028, 3056, 248, 12, 0, 2;
255678, 346676, 84344, 12774, 1132, 110, 4, 2;
365674, 493530, 119820, 18600, 1624, 112, 4;
917478, 1244492, 334096, 57080, 5700, 478, 16, 4;
1335398, 1862666, 495536, 82642, 8096, 676, 24, 6;
2107042, 2989864, 788340, 128378, 12536, 932, 52, 4;
3195474, 4557430, 1230300, 205352, 20516, 1664, 80, 4;
.
.
Cf.
A359690 (vertices),
A359691 (crossings),
A359692 (regions),
A359693 (edges),
A005728,
A290131,
A359653,
A358886,
A358882,
A006842,
A006843.
A360042
Number of vertices in a Farey fan of order n.
Original entry on oeis.org
4, 6, 11, 17, 29, 39, 59, 79, 107, 133, 175, 213, 271, 323, 385, 451, 541, 621, 731, 835, 955, 1073, 1225, 1367, 1541, 1707, 1897, 2087, 2321, 2535, 2801, 3061, 3345, 3625, 3937, 4243, 4609, 4957, 5335, 5713, 6155, 6569, 7055, 7529, 8031, 8531, 9101, 9649, 10265, 10859
Offset: 1
- M. Douglas McIlroy, A Note on Discrete Representation of Lines, AT&T Technical Journal, 64 (1985), 481-490.
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 10.
A359693
Number of edges in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
Original entry on oeis.org
6, 24, 162, 670, 4456, 8942, 44470, 98902, 259114, 438552, 1330566, 1897164, 4893752, 7246502, 11544278, 17678880
Offset: 1
Cf.
A359690 (vertices),
A359691 (crossings),
A359692 (regions),
A359694 (k-gons),
A005728,
A290132,
A359655,
A358888,
A358884,
A006842,
A006843.
A049643
Number of fractions in Farey series of order n.
Original entry on oeis.org
0, 2, 3, 5, 7, 11, 13, 19, 23, 29, 33, 43, 47, 59, 65, 73, 81, 97, 103, 121, 129, 141, 151, 173, 181, 201, 213, 231, 243, 271, 279, 309, 325, 345, 361, 385, 397, 433, 451, 475, 491, 531, 543, 585, 605, 629, 651, 697, 713, 755, 775, 807, 831, 883
Offset: 0
-
[0] cat [n le 1 select 2 else Self(n-1)+EulerPhi(n): n in [1..60]]; // G. C. Greubel, Dec 06 2017
-
a[0] = 0; a[n_] := 1 + Sum[EulerPhi[k], {k, 1, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 27 2015 *)
a[0] = 0; a[1] = 2; a[n_] := a[n -1] + EulerPhi[n]; Array[a, 55, 0] (* Robert G. Wilson v, Dec 13 2017 *)
Join[{0},Rest[Accumulate[EulerPhi[Range[0,60]]]+1]] (* Harvey P. Dale, Oct 16 2018 *)
a[n_] := If[n == 0, 0, FareySequence[n] // Length];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 16 2022 *)
-
for(n=0, 30, print1(if(n==0, 0, 1+sum(k=1, n, eulerphi(k))), ", ")) \\ G. C. Greubel, Dec 06 2017
A278046
Let v = list of denominators of Farey series of order n (see A006843); a(n) = sum of products of adjacent terms of v.
Original entry on oeis.org
1, 4, 18, 44, 124, 186, 424, 636, 1038, 1378, 2368, 2852, 4516, 5510, 7030, 8734, 12542, 14168, 19526, 22206, 26658, 30728, 40342, 44190, 54590, 61402, 72328, 80196, 99684, 105644, 129514, 143162, 161422, 176926, 201566, 214538, 255386, 277160, 307736, 329096, 384856, 402412, 466826, 499166
Offset: 1
When n = 4, v = [1,4,3,2,3,4,1], so a(4) = 1*4 + 4*3 + 3*2 + 2*3 + 3*4 + 4*1 = 44.
-
Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
ans:=[];
for n from 1 to 50 do
t1:=denom(Farey(n));
t2:=add( t1[i]*t1[i+1],i=1..nops(t1)-1);
ans:=[op(ans),t2];
od:
ans;
A358884
The number of edges in a Farey diagram of order (n,n).
Original entry on oeis.org
8, 92, 816, 3276, 13040, 29452, 82128, 160656, 328212, 556040, 1065660, 1592368, 2768168, 4026972, 6083804, 8572272, 13075848, 17078512, 24932940, 32266036
Offset: 1
See
A358298 for definition of Farey diagram Farey(m,n).
A359653
Number of regions formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.
Original entry on oeis.org
1, 4, 96, 728, 7840, 17744, 104136, 246108, 681704, 1187200, 3719496, 5396692, 14149896
Offset: 1
Comments