cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 106 results. Next

A049812 a(n)=number of Farey fractions of order n that are <=1/8; cf. A049805.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 25, 27, 29, 31, 34, 35, 38, 40, 43, 45, 49, 50, 54, 56, 59, 61, 66, 68, 73, 76, 79, 82, 87, 89, 95, 97, 101, 104, 110, 112, 117, 120, 125, 129, 136, 138
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Farey[n_] := Union[Flatten[Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; f[n_] := Length@ Select[ Farey@ n, # <= 1/8 &]; Array[f, 60] (* Robert G. Wilson v, Nov 14 2012 *)

A049813 a(n)=number of Farey fractions of order n that are <=1/9; cf. A049805.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 27, 30, 31, 34, 36, 38, 40, 43, 44, 48, 50, 53, 55, 59, 60, 64, 66, 69, 72, 77, 79, 84, 86, 90, 93, 98, 100, 105, 108, 112, 115, 121, 122
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Farey[n_] := Union[Flatten[Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; f[n_] := Length@ Select[ Farey@ n, # <= 1/9 &]; Array[f, 60] (* Robert G. Wilson v, Nov 14 2012 *)

A049814 a(n)=number of Farey fractions of order n that are <=1/10; cf. A049805.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 30, 32, 34, 36, 39, 40, 43, 45, 47, 49, 53, 54, 58, 60, 63, 65, 69, 70, 74, 76, 80, 83, 88, 90, 94, 97, 101, 104, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Farey[n_] := Union[Flatten[Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; f[n_] := Length@ Select[ Farey@ n, # <= 1/10 &]; Array[f, 60] (* Robert G. Wilson v, Nov 14 2012 *)

A359694 Irregular table read by rows: T(n,k) is the number of k-gons, k>=3, in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.

Original entry on oeis.org

2, 10, 2, 70, 24, 218, 160, 4, 1254, 1068, 148, 16, 2254, 2414, 252, 26, 10082, 11760, 1980, 266, 12, 21410, 25958, 5096, 648, 36, 4, 53422, 68208, 14360, 1980, 168, 20, 86986, 118922, 24028, 3056, 248, 12, 0, 2, 255678, 346676, 84344, 12774, 1132, 110, 4, 2, 365674, 493530, 119820, 18600, 1624, 112, 4
Offset: 1

Views

Author

Keywords

Comments

The number of vertices along each edge is A005728(n). No formula is known.
See A359692 for other images of the graph.

Examples

			The table begins:
2;
10, 2;
70, 24;
218, 160, 4;
1254, 1068, 148, 16;
2254, 2414, 252, 26;
10082, 11760, 1980, 266, 12;
21410, 25958, 5096, 648, 36, 4;
53422, 68208, 14360, 1980, 168, 20;
86986, 118922, 24028, 3056, 248, 12, 0, 2;
255678, 346676, 84344, 12774, 1132, 110, 4, 2;
365674, 493530, 119820, 18600, 1624, 112, 4;
917478, 1244492, 334096, 57080, 5700, 478, 16, 4;
1335398, 1862666, 495536, 82642, 8096, 676, 24, 6;
2107042, 2989864, 788340, 128378, 12536, 932, 52, 4;
3195474, 4557430, 1230300, 205352, 20516, 1664, 80, 4;
.
.
		

Crossrefs

Cf. A359690 (vertices), A359691 (crossings), A359692 (regions), A359693 (edges), A005728, A290131, A359653, A358886, A358882, A006842, A006843.

Formula

Sum of row n = A359692(n).

A360042 Number of vertices in a Farey fan of order n.

Original entry on oeis.org

4, 6, 11, 17, 29, 39, 59, 79, 107, 133, 175, 213, 271, 323, 385, 451, 541, 621, 731, 835, 955, 1073, 1225, 1367, 1541, 1707, 1897, 2087, 2321, 2535, 2801, 3061, 3345, 3625, 3937, 4243, 4609, 4957, 5335, 5713, 6155, 6569, 7055, 7529, 8031, 8531, 9101, 9649, 10265, 10859
Offset: 1

Views

Author

Keywords

Comments

See the reference for the definition of a 'Farey fan'.
The number of vertices along each edge is A005728(n), while the number of regions is conjectured to equal A005598(n) = 1 + Sum_{i=1..n} (n-i+1)*phi(i). The regions count the number of distinct approximate representations of straight lines y = mx + b that can be drawn on an x-y integer raster, where x, y, and b are restricted to [0,n) and 0 <= m <=1.
It is also worth noting that for 3 <= n <= 10 this sequence equals 2*A005728(n) + A174030(n-2), where A174030(n) = Sum_{i=1..n} (i where phi(i)|i). That is, the number of internal vertices of the Farey fan equals A174030(n) in this range. This may suggest a possible attack on finding a formula for the present sequence.

Crossrefs

Cf. A005598 (regions), A360043 (edges), A360044 (k-gons), A005728, A174030, A359974, A359968, A359690.

A359693 Number of edges in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.

Original entry on oeis.org

6, 24, 162, 670, 4456, 8942, 44470, 98902, 259114, 438552, 1330566, 1897164, 4893752, 7246502, 11544278, 17678880
Offset: 1

Views

Author

Keywords

Comments

The number of vertices along each edge is A005728(n). No formula for a(n) is known.
See A359690 and A359692 for images of the graph.

Crossrefs

Cf. A359690 (vertices), A359691 (crossings), A359692 (regions), A359694 (k-gons), A005728, A290132, A359655, A358888, A358884, A006842, A006843.

Formula

a(n) = A359690(n) + A359692(n) - 2*A005728(n) + 1 by Euler's formula.

A049643 Number of fractions in Farey series of order n.

Original entry on oeis.org

0, 2, 3, 5, 7, 11, 13, 19, 23, 29, 33, 43, 47, 59, 65, 73, 81, 97, 103, 121, 129, 141, 151, 173, 181, 201, 213, 231, 243, 271, 279, 309, 325, 345, 361, 385, 397, 433, 451, 475, 491, 531, 543, 585, 605, 629, 651, 697, 713, 755, 775, 807, 831, 883
Offset: 0

Views

Author

Keywords

Comments

Essentially the same as A005728.

Crossrefs

Cf. A000010.

Programs

  • Magma
    [0] cat [n le 1 select 2 else Self(n-1)+EulerPhi(n): n in [1..60]]; // G. C. Greubel, Dec 06 2017
  • Mathematica
    a[0] = 0; a[n_] := 1 + Sum[EulerPhi[k], {k, 1, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 27 2015 *)
    a[0] = 0; a[1] = 2; a[n_] := a[n -1] + EulerPhi[n]; Array[a, 55, 0] (* Robert G. Wilson v, Dec 13 2017 *)
    Join[{0},Rest[Accumulate[EulerPhi[Range[0,60]]]+1]] (* Harvey P. Dale, Oct 16 2018 *)
    a[n_] := If[n == 0, 0, FareySequence[n] // Length];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 16 2022 *)
  • PARI
    for(n=0, 30, print1(if(n==0, 0, 1+sum(k=1, n, eulerphi(k))), ", ")) \\ G. C. Greubel, Dec 06 2017
    

Formula

a(n) = A049641(2*n).
From G. C. Greubel, Dec 13 2017: (Start)
a(n) = 1 + Sum_{k=1..n} phi(k), with a(0)=0.
a(n) = A005728(n) for n >= 1. (End)
a(n) = a(n-1) + phi(n) for n > 1. - Robert G. Wilson v, Dec 13 2017

A278046 Let v = list of denominators of Farey series of order n (see A006843); a(n) = sum of products of adjacent terms of v.

Original entry on oeis.org

1, 4, 18, 44, 124, 186, 424, 636, 1038, 1378, 2368, 2852, 4516, 5510, 7030, 8734, 12542, 14168, 19526, 22206, 26658, 30728, 40342, 44190, 54590, 61402, 72328, 80196, 99684, 105644, 129514, 143162, 161422, 176926, 201566, 214538, 255386, 277160, 307736, 329096, 384856, 402412, 466826, 499166
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2016

Keywords

Comments

Note that the sum of the reciprocals of these products is 1.

Examples

			When n = 4, v = [1,4,3,2,3,4,1], so a(4) = 1*4 + 4*3 + 3*2 + 2*3 + 3*4 + 4*1 = 44.
		

Crossrefs

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
    ans:=[];
    for n from 1 to 50 do
    t1:=denom(Farey(n));
    t2:=add( t1[i]*t1[i+1],i=1..nops(t1)-1);
    ans:=[op(ans),t2];
    od:
    ans;

A358884 The number of edges in a Farey diagram of order (n,n).

Original entry on oeis.org

8, 92, 816, 3276, 13040, 29452, 82128, 160656, 328212, 556040, 1065660, 1592368, 2768168, 4026972, 6083804, 8572272, 13075848, 17078512, 24932940, 32266036
Offset: 1

Views

Author

Keywords

Comments

See the linked references for further details.
The first diagram where not all edge points are connected is n = 3. For example a line connecting points (0,1/3) and (1/3,0) has equation 3*y - 6*x - 1 = 0, and as one of the x or y coefficients is greater than n (3 in this case) the line is not included.

Crossrefs

Cf. A358882 (regions), A358883 (vertices), A358885 (k-gons), A006842, A006843, A005728, A358888.
See A358298 for definition of Farey diagram Farey(m,n).
The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.

Formula

a(n) = A358882(n) + A358883(n) - 1 by Euler's formula.

A359653 Number of regions formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.

Original entry on oeis.org

1, 4, 96, 728, 7840, 17744, 104136, 246108, 681704, 1187200, 3719496, 5396692, 14149896
Offset: 1

Views

Author

Keywords

Comments

The number of points internal to each edge is given by A005728(n) - 2.

Crossrefs

Cf. A359654 (vertices), A359655 (edges), A359656 (k-gons), A005728, A358886, A358882, A355798, A358948, A006842, A006843.

Formula

a(n) = A359655(n) - A359654(n) + 1 by Euler's formula.
Previous Showing 41-50 of 106 results. Next