cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A284712 Number of indecomposable permutations avoiding the pattern 4321.

Original entry on oeis.org

1, 1, 3, 12, 56, 289, 1603, 9391, 57437, 363773, 2371551, 15842850, 108070370, 750655459, 5297314241, 37909476912, 274693258884, 2012767854337, 14897269924571, 111269729060260, 838012360130944, 6359434553977763, 48597188639038769, 373757879279966501
Offset: 1

Views

Author

N. J. A. Sloane, Apr 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[1 - 6*x^2/(1 + 5*x - (1-9*x)^(3/4) * (1-x)^(1/4) * HypergeometricPFQ[{-1/4, 3/4}, {1}, 64*x/((x-1)*(1-9*x)^3)]), {x, 0, 30}], x]] (* Vaclav Kotesovec, Apr 03 2017 *)

Formula

a(n) ~ c * 3^(2*n) / n^4, where c = 2.102569600767282153... . - Vaclav Kotesovec, Apr 03 2017

Extensions

More terms from Vaclav Kotesovec, Apr 03 2017

A129130 Number of triples of standard tableaux with the same shape of height less than or equal to three.

Original entry on oeis.org

1, 1, 2, 10, 63, 531, 6201, 70477, 897149, 12772405, 188334604, 2939523104, 47902337803, 809518276503, 14134544880444, 252955559204532, 4651455689358657, 87356706437180529, 1669767921758484702
Offset: 0

Views

Author

Mike Zabrocki, Mar 30 2007

Keywords

Examples

			f_111 = f_3 = 1, f_21 = 2 therefore a(3) = f_111^3 + f_21^3 + f_3^3 = 1+8+1 = 10
		

Crossrefs

Formula

sum_lambda f_lambda^3 where the sum is over lambda partitions of length less than or equal to 3 and f_lambda is the number of standard tableaux of shape lambda

A145845 Number of permutations of length 2n+1 which are invariant under the reverse-complement map and have no decreasing subsequences of length 5.

Original entry on oeis.org

1, 2, 7, 34, 208, 1504, 12283, 109778, 1050820, 10614856, 111978128, 1224261856, 13792583296, 159411938560, 1883550536707, 22687603653106, 277940485660012, 3456490397570392, 43565433620294908, 555752354850506312, 7167182317486700416, 93348781597357983232, 1226830676118851157712
Offset: 0

Views

Author

Eric S. Egge, Oct 21 2008

Keywords

Programs

  • Mathematica
    Table[Sum[ Binomial[n, j]^2*(1/((j + 1)^2*(j + 2)))* Sum[Binomial[2*i, i]*Binomial[j + 1, i + 1]* Binomial[j + 2, i + 1], {i, 0, j}], {j, 0, n}], {n, 0, 20}]
  • PARI
    /* using formula given; this gives fractions! */
    C=binomial;
    a(n)=sum(j=0, n, C(n,j)^2 * (1/((j+1)^2*(j+2))) * sum(i=0, j, C(2*i,i)*C(j+1,i+i)*C(j+2,i+1)));
    \\ Joerg Arndt, Feb 18 2015
    
  • PARI
    /* Using a(n) = sum(j=0, n, C(n,j)^2 * A005802(j)). */
    f(n)= 2 * sum(k=0,n, binomial(2*k, k) * (binomial(n, k))^2 * (3*k^2+2*k+1-n-2*k*n)/((k+1)^2 * (k+2) * (n-k+1)));
    vector(33, N, my(n=N-1); sum(j=0,n, f(j) * C(n,j)^2 ) )
    \\ Joerg Arndt, Feb 18 2015

Formula

a(n) = sum(j=0, n, C(n,j)^2 * A005802(j)).
a(n) = sum(j=0, n, C(n,j)^2 * (1/((j+1)^2 (j+2))) * sum(i=0, j, C(2*i,i) * C(j+1,i+i) * C(j+2,i+1))) where C(n,j) = n!/(j!(n-j)!).
Recurrence: (n+2)^3*(3*n+1)*a(n) = 2*(30*n^4 + 67*n^3 + 29*n^2 - 10*n - 8)*a(n-1) - 64*(n-1)^2*n*(3*n+4)*a(n-2). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 2^(4*n+5) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Feb 18 2015

Extensions

Added more terms, Joerg Arndt, Feb 18 2015

A145846 Number of permutations of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 6.

Original entry on oeis.org

1, 2, 8, 47, 357, 3270, 34515, 406460, 5215829, 71677058, 1041363040, 15841778155, 250494079945, 4093630537014, 68830515423498, 1186424966652225, 20902566718237725, 375485138838707850, 6863181435514906992, 127420716337372828539, 2399321143670605041105
Offset: 0

Views

Author

Eric S. Egge, Oct 21 2008

Keywords

Programs

  • Mathematica
    Table[Sum[ Binomial[n, j]^2*((1/(n - j + 1))* Binomial[2*(n - j), n - j]/((j + 1)^2*(j + 2)))* Sum[Binomial[2*i, i]*Binomial[j + 1, i + 1]* Binomial[j + 2, i + 1], {i, 0, j}], {j, 0, n}], {n, 0, 20}]

Formula

a(n) = sum(j, 0, n, C(n,j)^2 * A000108(n-j) * A005802(j)), where C(n,j) = n!/(j!(n-j)!).
Recurrence: (n+2)^2*(n+3)^2*(64*n^3 + 96*n^2 - 36*n - 79)*a(n) = (2240*n^7 + 13664*n^6 + 26068*n^5 + 7303*n^4 - 27638*n^3 - 20581*n^2 + 5964*n + 5940)*a(n-1) - (n-1)^2*(16576*n^5 + 61344*n^4 + 25556*n^3 - 84501*n^2 - 46860*n - 15300)*a(n-2) + 225*(n-2)^2*(n-1)^2*(64*n^3 + 288*n^2 + 348*n + 45)*a(n-3). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 5^(2*n+13/2) / (128 * Pi^2 * n^6). - Vaclav Kotesovec, Feb 18 2015

Extensions

More terms from Vaclav Kotesovec, Feb 18 2015

A224298 Number of permutations in S_n containing exactly 3 increasing subsequences of length 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 10, 196, 2477, 25886, 244233, 2167834, 18510734, 154082218, 1260811144, 10198142484, 81848366557, 653537296202, 5201485318177, 41321901094750, 327996498249202
Offset: 1

Views

Author

Brian Nakamura, Apr 03 2013

Keywords

References

  • B. Nakamura and D. Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes, Adv. in Appl. Math. 50 (2013), 356-366.

Crossrefs

Programs

  • Maple
    # programs can be obtained from the Nakamura and Zeilberger link.

A247591 Dimension of invariants of 2n-th tensor power of 6-dimensional irreducible representation of A_3.

Original entry on oeis.org

1, 1, 3, 16, 126, 1296, 16071, 228514, 3607890, 61891050, 1135871490, 22049362440, 448790912004, 9512960347260, 208858963314735, 4728736078065810, 110006925920592810, 2621619942885055530, 63840054782606886630, 1585094577104979776880, 40054740803371374834780, 1028483346608802276173280
Offset: 0

Views

Author

Paul Zinn-Justin, Sep 20 2014

Keywords

Comments

The 6-dimensional representation is the usual representation of SO(6)=A_3.

Examples

			For 2n=6, there are 15 invariants corresponding to all ways of pairing the 6 indices with the metric tensor, plus one invariant which is the completely skew-symmetric 6-index tensor.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = (4*n*(2*n-1)*(5*n+7)*a[n-1] - 36*(n-1)*(2*n-3)*(2*n-1)*a[n-2]) / ((n+2)*(n+3)^2); Table[a[n], {n, 0, 21}]
  • PARI
    N=66; v=vector(N); v[1]=1; v[2]=1;
    for(n=2, N-1, my(t=n+1); v[t] = (-36*(n-1)*(2*n-3)*(2*n-1)*v[t-2] + 4*n*(2*n-1)*(5*n+7)*v[t-1]) / ((n+2)*(n+3)^2) );
    v \\ Joerg Arndt, Sep 20 2014

Formula

a(n) = (-36*(n-1)*(2*n-3)*(2*n-1)*a(n-2) + 4*n*(2*n-1)*(5*n+7)*a(n-1)) / ((n+2)*(n+3)^2).
a(n) = (9*(n+1)*A005802(n)-(n+5)*A005802(n+1))*binomial(2*n,n)/(2*(n+1)*(n+2)). - Mark van Hoeij, Nov 12 2023
Previous Showing 31-36 of 36 results.