A284712
Number of indecomposable permutations avoiding the pattern 4321.
Original entry on oeis.org
1, 1, 3, 12, 56, 289, 1603, 9391, 57437, 363773, 2371551, 15842850, 108070370, 750655459, 5297314241, 37909476912, 274693258884, 2012767854337, 14897269924571, 111269729060260, 838012360130944, 6359434553977763, 48597188639038769, 373757879279966501
Offset: 1
-
Rest[CoefficientList[Series[1 - 6*x^2/(1 + 5*x - (1-9*x)^(3/4) * (1-x)^(1/4) * HypergeometricPFQ[{-1/4, 3/4}, {1}, 64*x/((x-1)*(1-9*x)^3)]), {x, 0, 30}], x]] (* Vaclav Kotesovec, Apr 03 2017 *)
A129130
Number of triples of standard tableaux with the same shape of height less than or equal to three.
Original entry on oeis.org
1, 1, 2, 10, 63, 531, 6201, 70477, 897149, 12772405, 188334604, 2939523104, 47902337803, 809518276503, 14134544880444, 252955559204532, 4651455689358657, 87356706437180529, 1669767921758484702
Offset: 0
f_111 = f_3 = 1, f_21 = 2 therefore a(3) = f_111^3 + f_21^3 + f_3^3 = 1+8+1 = 10
A145845
Number of permutations of length 2n+1 which are invariant under the reverse-complement map and have no decreasing subsequences of length 5.
Original entry on oeis.org
1, 2, 7, 34, 208, 1504, 12283, 109778, 1050820, 10614856, 111978128, 1224261856, 13792583296, 159411938560, 1883550536707, 22687603653106, 277940485660012, 3456490397570392, 43565433620294908, 555752354850506312, 7167182317486700416, 93348781597357983232, 1226830676118851157712
Offset: 0
-
Table[Sum[ Binomial[n, j]^2*(1/((j + 1)^2*(j + 2)))* Sum[Binomial[2*i, i]*Binomial[j + 1, i + 1]* Binomial[j + 2, i + 1], {i, 0, j}], {j, 0, n}], {n, 0, 20}]
-
/* using formula given; this gives fractions! */
C=binomial;
a(n)=sum(j=0, n, C(n,j)^2 * (1/((j+1)^2*(j+2))) * sum(i=0, j, C(2*i,i)*C(j+1,i+i)*C(j+2,i+1)));
\\ Joerg Arndt, Feb 18 2015
-
/* Using a(n) = sum(j=0, n, C(n,j)^2 * A005802(j)). */
f(n)= 2 * sum(k=0,n, binomial(2*k, k) * (binomial(n, k))^2 * (3*k^2+2*k+1-n-2*k*n)/((k+1)^2 * (k+2) * (n-k+1)));
vector(33, N, my(n=N-1); sum(j=0,n, f(j) * C(n,j)^2 ) )
\\ Joerg Arndt, Feb 18 2015
A145846
Number of permutations of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 6.
Original entry on oeis.org
1, 2, 8, 47, 357, 3270, 34515, 406460, 5215829, 71677058, 1041363040, 15841778155, 250494079945, 4093630537014, 68830515423498, 1186424966652225, 20902566718237725, 375485138838707850, 6863181435514906992, 127420716337372828539, 2399321143670605041105
Offset: 0
-
Table[Sum[ Binomial[n, j]^2*((1/(n - j + 1))* Binomial[2*(n - j), n - j]/((j + 1)^2*(j + 2)))* Sum[Binomial[2*i, i]*Binomial[j + 1, i + 1]* Binomial[j + 2, i + 1], {i, 0, j}], {j, 0, n}], {n, 0, 20}]
A224298
Number of permutations in S_n containing exactly 3 increasing subsequences of length 4.
Original entry on oeis.org
0, 0, 0, 0, 0, 10, 196, 2477, 25886, 244233, 2167834, 18510734, 154082218, 1260811144, 10198142484, 81848366557, 653537296202, 5201485318177, 41321901094750, 327996498249202
Offset: 1
- B. Nakamura and D. Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes, Adv. in Appl. Math. 50 (2013), 356-366.
A247591
Dimension of invariants of 2n-th tensor power of 6-dimensional irreducible representation of A_3.
Original entry on oeis.org
1, 1, 3, 16, 126, 1296, 16071, 228514, 3607890, 61891050, 1135871490, 22049362440, 448790912004, 9512960347260, 208858963314735, 4728736078065810, 110006925920592810, 2621619942885055530, 63840054782606886630, 1585094577104979776880, 40054740803371374834780, 1028483346608802276173280
Offset: 0
For 2n=6, there are 15 invariants corresponding to all ways of pairing the 6 indices with the metric tensor, plus one invariant which is the completely skew-symmetric 6-index tensor.
-
a[0] = 1; a[1] = 1; a[n_] := a[n] = (4*n*(2*n-1)*(5*n+7)*a[n-1] - 36*(n-1)*(2*n-3)*(2*n-1)*a[n-2]) / ((n+2)*(n+3)^2); Table[a[n], {n, 0, 21}]
-
N=66; v=vector(N); v[1]=1; v[2]=1;
for(n=2, N-1, my(t=n+1); v[t] = (-36*(n-1)*(2*n-3)*(2*n-1)*v[t-2] + 4*n*(2*n-1)*(5*n+7)*v[t-1]) / ((n+2)*(n+3)^2) );
v \\ Joerg Arndt, Sep 20 2014
Comments