cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 580 results. Next

A019456 Coordination sequence T1 for Zeolite Code CZP.

Original entry on oeis.org

1, 4, 9, 18, 32, 54, 83, 113, 149, 191, 234, 281, 342, 399, 459, 537, 611, 678, 763, 861, 947, 1035, 1151, 1267, 1367, 1481, 1611, 1738, 1862, 1995, 2140, 2291, 2443, 2591, 2751, 2929, 3094, 3252, 3439, 3639, 3816, 3995, 4211, 4427, 4618, 4823, 5055
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996

Crossrefs

A019457 Coordination sequence T2 for Zeolite Code CZP.

Original entry on oeis.org

1, 4, 10, 20, 33, 56, 85, 114, 144, 192, 242, 280, 333, 412, 475, 526, 602, 698, 776, 850, 949, 1058, 1157, 1258, 1372, 1500, 1620, 1732, 1863, 2020, 2161, 2280, 2434, 2624, 2778, 2910, 3087, 3294, 3463, 3618, 3818, 4038, 4228, 4410, 4625, 4864, 5075
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996

Crossrefs

A019458 Coordination sequence T3 for Zeolite Code CZP.

Original entry on oeis.org

1, 4, 8, 16, 33, 52, 73, 112, 160, 190, 214, 282, 351, 386, 439, 548, 624, 658, 742, 872, 953, 1012, 1127, 1276, 1380, 1462, 1582, 1744, 1877, 1970, 2101, 2302, 2464, 2558, 2710, 2948, 3113, 3210, 3397, 3660, 3834, 3952, 4166, 4444, 4637, 4782, 5005
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996

Crossrefs

A033616 Coordination sequence T1 for Zeolite Code TSC.

Original entry on oeis.org

1, 4, 9, 16, 25, 37, 53, 74, 99, 125, 151, 177, 205, 238, 279, 328, 381, 434, 483, 528, 574, 627, 690, 762, 840, 919, 995, 1068, 1140, 1214, 1294, 1382, 1477, 1577, 1681, 1787, 1892, 1995, 2096, 2197, 2303, 2419, 2546, 2681, 2819, 2954, 3082, 3205, 3329
Offset: 0

Views

Author

Keywords

Comments

First 127 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

Cf. A033617 (second type), A299902 (partial sums).

Formula

G.f.: (1 + x)^3 * (1 + x^2) * (1 - x + 2*x^2 - x^3 + 3*x^4 - x^5 + 4*x^6 - x^7 + 4*x^8 - x^9 + 4*x^10 - x^11 + 4*x^12 - x^13 + 3*x^14 - x^15 + 2*x^16 - x^17 + x^18) / ((1 - x)^3 * (1 - x + x^2 - x^3 + x^4) * (1 + x + x^2 + x^3 + x^4) * (1 + x^3 + x^6) * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Dec 19 2015
From N. J. A. Sloane, Feb 22 2018 (Start)
The following is a another conjectured recurrence, found by gfun, using the command rec:=gfun[listtorec](t1, a(n)); (where t1 is a list of the initial terms) suggested by Paul Zimmermann.
Note: this should not be used to extend the sequence.
0 = (-38*n^3-836*n^2-5351*n)*a(n)+(-76*n^2-798*n)*a(n+1)+(-38*n^3-912*n^2-6149*n)*a(n+2)+(-38*n^3-988*n^2-6947*n)*a(n+3)+(-38*n^3-1064*n^2-7745*n)*a(n+4)+(-38*n^3-1140*n^2 -8543*n)*a(n+5)+(-76*n^3-2052*n^2-14692*n)*a(n+6)
+ (-532*n^2-5586*n)*a(n+7)+(-76*n^3-2204*n^2-16288*n)*a(n+8)+(-684*n^2-7182*n)*a(n+9)+(-684*n^2 -7182*n)*a(n+10)+(-684*n^2-7182*n)*a(n+11)+(-684*n^2-7182*n)*a(n+12)+(76*n^3+ 988*n^2+3520*n)*a(n+13)+(-532*n^2-5586*n)*a(n+14)+(76*n^3+1140*n^2+5116*n)*a(n+15)
+ (38*n^3+456*n^2+1361*n)*a(n+16)+(38*n^3+532*n^2+2159*n)*a(n+17)+(38*n^3+608*n^2+2957*n)*a(n+18)+(38*n^3+684*n^2+3755*n)*a(n+19)+(-76*n^2-798*n)*a(n+20)+(38*n^3+760*n^2+4553*n)*a(n+21), with
a(0) = 1, a(1) = 4, a(2) = 9, a(3) = 16, a(4) = 25, a(5) = 37, a(6) = 53, a(7) = 74, a(8) = 99, a(9) = 125, a(10) = 151, a(11) = 177, a(12) = 205, a(13) = 238, a(14) = 279, a(15) = 328, a(16) = 381, a(17) = 434, a(18) = 483, a(19) = 528, a(20) = 574, a(21) = 627
(End)

A033617 Coordination sequence T2 for Zeolite Code TSC.

Original entry on oeis.org

1, 4, 9, 17, 28, 41, 56, 73, 93, 117, 146, 180, 216, 253, 291, 329, 369, 414, 466, 524, 586, 650, 712, 773, 836, 902, 973, 1051, 1136, 1224, 1313, 1403, 1492, 1581, 1673, 1769, 1870, 1978, 2093, 2211, 2329, 2447, 2563, 2678, 2797, 2923, 3057, 3198, 3344
Offset: 0

Views

Author

Keywords

Comments

First 127 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

Cf. A033616, A299903 (partial sums).

Formula

G.f.: (1 + x)^3 * (1 - x + x^2) * (1 + x^2) * (1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 3*x^8 + x^9 + 2*x^10 + x^11 + x^12 + x^13 + x^14 + x^16) / ((1 - x)^3 * (1 - x + x^2 - x^3 + x^4) * (1 + x + x^2 + x^3 + x^4) * (1 + x^3 + x^6) * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Dec 20 2015
From N. J. A. Sloane, Feb 22 2018 (Start)
The following is another conjectured recurrence, found by gfun, using the command rec:=gfun[listtorec](t1, a(n)); (where t1 is a list of the initial terms) suggested by Paul Zimmermann.
Note: this should not be used to extend the sequence.
0 = (-38*n^3-836*n^2-5367*n)*a(n)+(-76*n^2-798*n)*a(n+1)+(-38*n^3-912*n^2-6165*n)*a(n+2)+(-38*n^3-988*n^2-6963*n)*a(n+3)+(-38*n^3-1064*n^2-7761*n)*a(n+4)+(-38*n^3-1140*n^2-8559*n)*a(n+5)+(-76*n^3-2052*n^2-14724*n)*a(n+6)
+ (-532*n^2-5586*n)*a(n+7)+(-76*n^3-2204*n^2-16320*n)*a(n+8)+(-684*n^2-7182*n)*a(n+9)+(-684*n^2-7182*n)*a(n+10)+(-684*n^2-7182*n)*a(n+11)+(-684*n^2-7182*n)*a(n+12)+(76*n^3+988*n^2+3552*n)*a(n+13)+(-532*n^2-5586*n)*a(n+14)
+ (76*n^3+1140*n^2+5148*n)*a(n+15)+(38*n^3+456*n^2+1377*n)*a(n+16)+(38*n^3+532*n^2+2175*n)*a(n+17)+(38*n^3+608*n^2+2973*n)*a(n+18)
+ (38*n^3+684*n^2+3771*n)*a(n+19)+(-76*n^2-798*n)*a(n+20)+(38*n^3+760*n^2+4569*n)*a(n+21), with
a(0) = 1, a(1) = 4, a(2) = 9, a(3) = 17, a(4) = 28, a(5) = 41, a(6) = 56, a(7) = 73, a(8) = 93, a(9) = 117, a(10) = 146, a(11) = 180, a(12) = 216, a(13) = 253, a(14) = 291, a(15) = 329, a(16) = 369, a(17) = 414, a(18) = 466, a(19) = 524, a(20) = 586, a(21) = 650.
(End)

A008016 Coordination sequence T2 for Zeolite Code AFO.

Original entry on oeis.org

1, 4, 11, 22, 41, 65, 88, 111, 145, 186, 231, 281, 336, 395, 455, 518, 597, 679, 752, 827, 921, 1024, 1123, 1222, 1330, 1442, 1555, 1678, 1821, 1965, 2088, 2207, 2357, 2518, 2671, 2829, 2996, 3167, 3335, 3506, 3705, 3903, 4072, 4247, 4461, 4688, 4899, 5104
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996

A008040 Coordination sequence T3 for Zeolite Code ATS.

Original entry on oeis.org

1, 4, 10, 19, 32, 51, 72, 96, 124, 155, 196, 238, 278, 324, 374, 436, 500, 558, 620, 688, 772, 857, 934, 1014, 1098, 1203, 1310, 1405, 1504, 1606, 1730, 1858, 1972, 2089, 2210, 2355, 2502, 2634, 2770, 2909, 3076, 3244, 3392, 3546, 3704, 3892, 4082, 4248
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996

Formula

G.f.: (1 + x) * (1 + 2*x + 5*x^2 + 7*x^3 + 13*x^4 + 16*x^5 + 18*x^6 + 20*x^7 + 18*x^8 + 16*x^9 + 13*x^10 + 7*x^11 + 5*x^12 + 2*x^13 + x^14) / ((1 - x)^3 * (1 - x + x^2) * (1 + x + x^2) * (1 + x + x^2 + x^3 + x^4)^2). - Colin Barker, Dec 21 2015

A008185 Coordination sequence T4 for Zeolite Code MOR.

Original entry on oeis.org

1, 4, 11, 24, 39, 60, 92, 122, 148, 195, 250, 293, 342, 403, 472, 551, 621, 690, 786, 879, 954, 1047, 1168, 1293, 1397, 1484, 1622, 1773, 1880, 2007, 2181, 2336, 2456, 2606, 2783, 2966, 3122, 3278, 3468, 3672, 3855, 4037, 4253, 4466, 4664, 4853, 5081, 5338
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.

A008242 Coordination sequence T2 for Zeolite Code TON.

Original entry on oeis.org

1, 4, 12, 23, 43, 66, 91, 128, 169, 214, 258, 306, 381, 450, 509, 574, 659, 771, 848, 924, 1038, 1148, 1274, 1373, 1491, 1636, 1743, 1902, 2051, 2188, 2340, 2466, 2689, 2864, 2991, 3170, 3343, 3611, 3776, 3910, 4166, 4362, 4626, 4813, 5007, 5296, 5461, 5768
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996

A008259 Coordination sequence T2 for Moganite, also for BGB1.

Original entry on oeis.org

1, 4, 11, 24, 41, 62, 90, 122, 157, 200, 247, 296, 354, 416, 479, 552, 629, 706, 794, 886, 977, 1080, 1187, 1292, 1410, 1532, 1651, 1784, 1921, 2054, 2202, 2354, 2501, 2664, 2831, 2992, 3170, 3352, 3527, 3720, 3917, 4106, 4314, 4526, 4729, 4952, 5179, 5396
Offset: 0

Views

Author

Ralf W. Grosse-Kunstleve, David M. Teter (dmteter(AT)sandia.gov)

Keywords

References

  • Inorganic Crystal Structure Database: Collection Code 67669 (for Moganite)

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1) (x^6 + 2 x^5 + 5 x^4 + 6 x^3 + 5 x^2 + 2 x + 1)/((x - 1)^3 (x^2 + x + 1)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2013 *)
    LinearRecurrence[{1,0,2,-2,0,-1,1},{1,4,11,24,41,62,90,122},70] (* Harvey P. Dale, May 10 2024 *)

Formula

a(3m) = 22m^2+2, a(3m+1) = 22m^2+15m+4, a(3m+2)=22m^2+29m+11. - N. J. A. Sloane
G.f.: -(x+1)*(x^6+2*x^5+5*x^4+6*x^3+5*x^2+2*x+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Dec 12 2012
Previous Showing 61-70 of 580 results. Next