cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A271393 a(1) = 3, a(n+1) = (3^a(n)-1)/2.

Original entry on oeis.org

3, 13, 797161
Offset: 1

Views

Author

Thomas Ordowski, Apr 06 2016

Keywords

Comments

The next term is too large to include.
The terms a(1), a(2), and a(3) are primes.
The next term a(4) is a composite number, a pseudoprime to base 3.
If a(n) is a pseudoprime to base 3, then a(n+1) is a pseudoprime to base 3.
Note that a(n) divides a(n+1)-1 for every n.
a(4) has 380343 digits. - Altug Alkan, Apr 09 2016

References

  • R. Steuerwald (1948), see A005935.

Crossrefs

Cf. A005935 (see Steuerwald's theorem), A007013, A028491.

Programs

A306144 Numbers k > 2 such that 3^(k-1) == 1 (mod k) and gcd(k, 2^(k-1)-1) = 1.

Original entry on oeis.org

286, 16531, 24046, 49051, 72041, 182527, 192713, 232726, 258017, 327781, 442471, 443713, 453259, 574397, 625873, 652879, 655051, 668431, 705091, 903631, 1236031, 1241143, 1250833, 1287091, 1304446, 1309111, 1351601, 1414639, 1563151, 1817743, 1899451, 1908397
Offset: 1

Views

Author

Thomas Ordowski, Aug 18 2018

Keywords

Comments

The odd terms are "anti-Carmichael pseudoprimes (3,2)" defined as follows: numbers k > 1 such that 3^k == 3 (mod k) and gcd(k, 2^k-2) = 1. Cf. A300762 (2,3).
We impose k>2, since we want these to be pseudoprimes, thus composite numbers.

Crossrefs

Subsequence of A005935.
Cf. A130433.

Programs

  • Mathematica
    Select[Range[3, 2*10^6], PowerMod[3, #-1, #] == 1 && GCD[#, #-1 + PowerMod[2, #-1, #]] == 1 &] (* Giovanni Resta, Aug 18 2018 *)
  • PARI
    isok(k) = (k>2) && (Mod(3, k)^(k-1) == Mod(1, k)) && (gcd(k, 2^(k-1)-1) == 1); \\ Michel Marcus, Aug 18 2018

Extensions

More terms from Michel Marcus, Aug 18 2018
Further terms from Giovanni Resta, Aug 18 2018

A333316 Numbers k such that k^2 + 1 is a Fermat pseudoprime to base 3.

Original entry on oeis.org

216, 660, 1484, 1560, 8208, 52164, 544320, 592956, 649800, 4321800, 5103210, 6182220, 10621380, 21415680, 24471720, 135307008, 359624088, 535019100, 1071782250, 1113233520, 1227427740, 1527496740, 9462748008, 143935711920
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2020

Keywords

Comments

a(24) > 7*10^10.
The corresponding pseudoprimes a(n)^2 + 1 are 46657, 435601, 2202257, 2433601, 67371265, ...
a(25) > 7.5*10^11. - Giovanni Resta, Mar 15 2020

Examples

			216 is a term since 216^2 + 1 = 46657 is a Fermat pseudoprime to base 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], CompositeQ[#^2 + 1] && PowerMod[3, #^2, #^2 + 1] == 1 &]

Extensions

a(24) from Giovanni Resta, Mar 15 2020
Previous Showing 41-43 of 43 results.