cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A210789 Triangle of coefficients of polynomials u(n,x) jointly generated with A210790; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 8, 8, 5, 1, 5, 12, 18, 15, 8, 1, 6, 18, 32, 39, 28, 13, 1, 7, 24, 53, 77, 80, 51, 21, 1, 8, 32, 80, 142, 176, 160, 92, 34, 1, 9, 40, 116, 234, 352, 384, 312, 164, 55, 1, 10, 50, 160, 370, 632, 830, 812, 598, 290, 89, 1, 11, 60, 215
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with 1 and ends with F(n), where F=A000045 (Fibonacci numbers).
Column 2: 1,2,3,4,5,6,7,8,...
Row sums: A006138.
Alternating row sums: signed Fibonacci numbers.
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 28 2012

Examples

			First five rows:
  1;
  1, 1;
  1, 2, 2;
  1, 3, 4, 3;
  1, 4, 8, 8, 5;
First three polynomials u(n,x):
  1
  1 + x
  1 + 2x + 2x^2.
From _Philippe Deléham_, Mar 28 2012: (Start)
(1, 0, 0, -1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
  1;
  1, 0;
  1, 1, 0;
  1, 2, 2, 0;
  1, 3, 4, 3, 0;
  1, 4, 8, 8, 5, 0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 0; c = 0; h = 2; p = -1; f = 0;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210789 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210790 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A006138 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A105476 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+2)*u(n-1,x) + (x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 28 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1+x-y*x-y*x^2-y^2*x^2)/(1-y*x-y*x^2-x^2-y^2*x^2).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

A210790 Triangle of coefficients of polynomials v(n,x) jointly generated with A210789; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 5, 5, 1, 4, 10, 10, 8, 1, 6, 14, 24, 20, 13, 1, 6, 21, 38, 52, 38, 21, 1, 8, 27, 65, 96, 109, 71, 34, 1, 8, 36, 92, 176, 224, 220, 130, 55, 1, 10, 44, 136, 280, 446, 500, 434, 235, 89, 1, 10, 55, 180, 440, 772, 1066, 1074, 839, 420, 144, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with 1 and ends with F(n+1), where F=A000045 (Fibonacci numbers).
Column 2: 2,2,4,4,6,6,8,8,...
Row sums: A105476.
Alternating row sums: signed Fibonacci numbers.
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 28 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  2,  3;
  1,  4,  5,  5;
  1,  4, 10, 10,  8;
First three polynomials v(n,x):
  1
  1 + 2x
  1 + 2x + 3x^2.
From _Philippe Deléham_, Mar 28 2012: (Start)
(1, 0, -1, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  2,  3,  0;
  1,  4,  5,  5,  0;
  1,  4, 10, 10,  8,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 0; c = 0; h = 2; p = -1; f = 0;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210789 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210790 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A006138 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A105476 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+2)*u(n-1,x) + (x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 28 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1+x-y*x-y^2*x^2)/(1-y*x-x^2-y*x^2-y^2*x^2).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

A129710 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Also number of Fibonacci binary words of length n and having k 10 subwords.
Row n has 1+floor(n/2) terms.
Row sums are the Fibonacci numbers (A000045).
T(n,0)=2 for n >= 1.
Sum_{k>=0} k*T(n,k) = A023610(n-2).
Triangle, with zeros omitted, given by (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 14 2012
Riordan array ((1+x)/(1-x), x^2/(1-x)), zeros omitted. - Philippe Deléham, Jan 14 2012

Examples

			T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
  1;
  2;
  2, 1;
  2, 3;
  2, 5, 1;
  2, 7, 4;
  2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
  1;
  2, 0;
  2, 1, 0;
  2, 3, 0, 0;
  2, 5, 1, 0, 0;
  2, 7, 4, 0, 0, 0;
  2, 9, 9, 1, 0, 0, 0;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)

Formula

T(n,k) = binomial(n-k,k) + binomial(n-k-1,k) for n >= 1 and 0 <= k <= floor(n/2).
G.f. = G(t,z) = (1+z)/(1-z-tz^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A078050(n), A057079(n), A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Jan 14 2012
T(n,k) = T(n-1,k) + T(n-2,k-1) with T(0,0)=1, T(1,0)=2, T(1,1)=0 and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Jan 14 2012

A209599 Triangle T(n,k), read by rows, given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 3, 0, 0, 8, 7, 1, 0, 0, 13, 15, 4, 0, 0, 0, 21, 30, 12, 1, 0, 0, 0, 34, 58, 31, 5, 0, 0, 0, 0, 55, 109, 73, 18, 1, 0, 0, 0, 0, 89, 201, 162, 54, 6, 0, 0, 0, 0, 0, 144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2012

Keywords

Comments

A skew version of A122075.

Examples

			Triangle begins :
  1
  2, 0
  3, 1, 0
  5, 3, 0, 0
  8, 7, 1, 0, 0
  13, 15, 4, 0, 0, 0
  21, 30, 12, 1, 0, 0, 0
  34, 58, 31, 5, 0, 0, 0, 0
  55, 109, 73, 18, 1, 0, 0, 0, 0
  89, 201, 162, 54, 6, 0, 0, 0, 0, 0
  144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
  ...
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1; T[1, 0] := 2; T[1, 1] := 0; T[n_, k_] := T[n, k] = If[n<0, 0, If[k > n, 0, T[n - 1, k] + T[n - 2, k] + T[n - 2, k - 1]]]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 19 2017 *)

Formula

G.f.: (1+x)/(1-x-(1+y)*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Previous Showing 11-14 of 14 results.