cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A288090 a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 2.

Original entry on oeis.org

7808250450, 955708437684, 56532447160536, 2200626948631386, 64232028100704156, 1511718920778951024, 30044423965980553536, 520516978029736518606, 8044640800289827566756, 112860842135424498808968, 1456882832375987896763184, 17491588653334242501297012, 197038603477850885815215480
Offset: 13

Views

Author

Gheorghe Coserea, Jun 05 2017

Keywords

Crossrefs

Rooted maps of genus 2 with n edges and f faces for 1<=f<=10: A006298 f=1, A288082 f=2, A288083 f=3, A288084 f=4, A288085 f=5, A288086 f=6, A288087 f=7, A288088 f=8, A288089 f=9, this sequence.
Column 10 of A269922.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 10, 2];
    Table[a[n], {n, 13, 25}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288090_ser(N) = {
      my(y = A000108_ser(N+1));
      6*y*(y-1)^13*(197300616213*y^12 + 2233379349250*y^11 + 1077980722075*y^10 - 16537713992125*y^9 + 7856375825902*y^8 + 29387232350368*y^7 - 33290642716432*y^6 + 994024496848*y^5 + 14078465181600*y^4 - 6737013421440*y^3 + 532103069696*y^2 + 244607984896*y - 34798091776)/(y-2)^38;
    };
    Vec(A288090_ser(13))

A118446 Number of tree-rooted maps of genus 2 with n edges: rooted maps with a distinguished spanning tree on an orientable surface of genus 2.

Original entry on oeis.org

21, 1428, 59136, 1936935, 55165110, 1430857428, 34701610944, 800003272068, 17726513264460, 380471504212800, 7955313269904000, 162738137109652650, 3267801532548762300, 64578810084245919000, 1258643138633207712000, 24234564983959535297400, 461636913607179055445700
Offset: 4

Views

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

Tree-rooted planar maps are counted by A005568 and tree-rooted maps on the torus by A118445.

Programs

  • Maple
    C := proc(n) binomial(2*n,n)/(n+1) end:
    b := proc(n) options remember;
      if n<4 then 0 elif n=4 then 21 else
        ((5*(n-1)+3)*(4*(n-1)+2)*b(n-1))/((5*(n-1)-2)*(n-1-3))
      fi
    end:
    seq(add(binomial(2*n,2*i)*C(i)*b(n-i), i=0..n), n=4..20);
    # Mark van Hoeij, Apr 06 2013
  • Mathematica
    a[n_] := 2^(4n-9)(n-2)(5n^2+n+6) Gamma[n-3/2] Gamma[n+1/2]/(45 Pi (n-4)! (n+1)! );
    Table[a[n], {n, 4, 20}] (* Jean-François Alcover, Aug 28 2019 *)
  • PARI
    C(n) = binomial(2*n, n)/(n+1);
    A006298(n) = if(n<4,0,if(n==4,21,((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3))));
    b(n)=A006298(n);
    a(n)=sum(k=0,n, binomial(2*n,2*k) * C(k) * b(n-k) );
    /* Joerg Arndt, Apr 07 2013 */

Formula

a(n) = sum(k=0..n, binomial(2*n,2*k) * C(k) * b(n-k) ), where C(n)=A000108(n) - n-th Catalan number and b(n)=A006298(n) - the number of one-vertex maps of genus 2 for n>=4 and b(n)=0 for n<4.
G.f.: 7*x^4*(3*(1-9*x)*hypergeom([7/2,11/2],[6],16*x)+77*(1-6*x)*x*hypergeom([9/2,13/2],[7],16*x)). - Mark van Hoeij, Apr 07 2013
a(n) = (n-3)*(n-2)^2*(n-1)*n*(5*n^2+n+6) * binomial(2*n,n)^2 / (5760*(n+1)*(2*n-3)*(2*n-1)). - Vaclav Kotesovec, Oct 26 2024

Extensions

Corrected (replaced 34385678184 by 34701610944) and added more terms, Mark van Hoeij and Joerg Arndt, Apr 07 2013
Previous Showing 11-12 of 12 results.