cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A277967 Number of even numbers b with 0 < b < 2^n such that b^(2^n) + 1 is prime.

Original entry on oeis.org

0, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 1
Offset: 1

Views

Author

Jeppe Stig Nielsen, Nov 06 2016

Keywords

Comments

The choice whether to take b < 2^n or b <= 2^n matters only for n=1 and n=2 unless there are more primes like 2^2+1 and 4^4+1 (see A121270).
Perfect squares b are allowed.
a(20) was determined after a lengthy computation by distributed project PrimeGrid, cf. A321323. - Jeppe Stig Nielsen, Jan 02 2019

Examples

			For n=18, we get b^262144 + 1 is prime for b=24518, 40734, 145310, 361658, 525094, ...; the first 3 of these b values are strictly below 262144, hence a(18)=3.
The corresponding primes are 2^4+1; 2^8+1, 4^8+1; 2^16+1; 30^32+1; 120^128+1; 46^512+1; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Range[2, 2^n - 1, 2], b_ /; PrimeQ[b^(2^n) + 1]], {n, 9}] (* Michael De Vlieger, Nov 10 2016 *)
  • PARI
    a(n)=sum(k=1,2^(n-1)-1,ispseudoprime((2*k)^2^n+1)) \\ slow, only probabilistic primality test

Extensions

a(20) from Jeppe Stig Nielsen, Jan 02 2019

A378702 Primes p such that 256*p^8 + 1 is prime.

Original entry on oeis.org

2, 59, 271, 281, 433, 467, 587, 971, 1039, 1097, 1181, 1277, 1283, 1361, 1373, 1427, 1447, 1481, 1579, 1657, 1777, 2089, 2129, 2269, 2381, 2617, 2753, 2803, 2939, 3181, 3319, 3691, 3823, 4093, 4217, 4241, 4327, 4909, 4999, 5279, 5303, 5387, 5483, 6043, 6121, 6197, 6221, 6563, 6577, 7159, 7243, 7867
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 04 2024

Keywords

Crossrefs

Primes p such that (2*p)^(2^n) + 1 is prime: A005384 (n = 0), A052291 (n = 1), A378146 (n = 2), this sequence (n = 3).

Programs

  • Magma
    [p: p in PrimesUpTo(8000) | IsPrime(256*p^8 + 1)];
    
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(2*#)^8 + 1] &] (* Amiram Eldar, Dec 06 2024 *)
  • PARI
    select(p->isprime(256*p^8+1), primes(10^6)) \\ Charles R Greathouse IV, Dec 04 2024

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 04 2024
Previous Showing 41-42 of 42 results.