cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A210553 Triangle of coefficients of polynomials v(n,x) jointly generated with A210552; see the Formula section.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 3, 5, 3, 5, 4, 9, 8, 5, 6, 5, 14, 15, 15, 8, 7, 6, 20, 24, 31, 26, 13, 8, 7, 27, 35, 54, 57, 46, 21, 9, 8, 35, 48, 85, 104, 108, 80, 34, 10, 9, 44, 63, 125, 170, 209, 199, 139, 55, 11, 10, 54, 80, 175, 258, 360, 404, 366, 240, 89, 12, 11, 65, 99
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2012

Keywords

Comments

Let T(n,k) denote the term in row n, column k.
T(n,n): A000045 (Fibonacci numbers)
T(n,n-1): A006367
T(n,n-2): A105423
T(n,1): 1,2,3,4,5,6,7,8,9,...
T(n,2): 1,2,3,4,5,6,7,8,9,...
T(n,3): A000096
T(n,4): A005563
T(n,5): A055831
T(n,6): A111694
Row sums: A000225
Alternating row sums: A052551
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...1
3...2...2
4...3...5...3
5...4...9...8...5
First three polynomials v(n,x): 1, 2 + x , 3 + 2x + 2x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210552 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210553 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A094024 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A052551 *)

Formula

u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A238159 Number of compositions of n with exactly one part equal to 1 or exactly one part equal to 2.

Original entry on oeis.org

0, 1, 1, 2, 5, 11, 15, 35, 70, 124, 234, 447, 827, 1529, 2834, 5222, 9587, 17573, 32137, 58641, 106821, 194280, 352824, 639913, 1159238, 2097759, 3792375, 6849778, 12361822, 22292405, 40172089, 72344671, 130203409, 234200988, 421037335, 756538955, 1358728300
Offset: 0

Views

Author

Geoffrey Critzer, Feb 18 2014

Keywords

Examples

			a(4) = 5 because we have: 1+3, 3+1, 1+1+2, 1+2+1, 2+1+1.
		

Crossrefs

Cf. A006367 exactly one part equal to 1, A079662 exactly one part equal to 2 (with appropriate offset).

Programs

  • Mathematica
    nn=30;a=1/(1-(x/(1-x)-x));b=1/(1-(x/(1-x)-x^2));c=1/(1-(x/(1-x)-x-x^2));CoefficientList[Series[a^2x +b^2x^2-2 c^3x^3,{x,0,nn}],x]
    (* or *)
    Table[Length[Select[Level[Table[Select[Compositions[n,k],Count[#,0]==0&],{k,1,n}],{2}],Count[#,1]==1||Count[#,2]==1&]],{n,0,10}]

Formula

G.f.: x*A(x)^2 + x^2*B(x)^2 - 2*x^3*C(x)^3 where A(x)=1/(1 - (x/(1-x)-x)), B(x)=1/(1 - (x/(1-x)-x^2)), C(x)=1/(1 - (x/(1-x)-x-x^2)).
a(n) ~ c * n / (2^(n-1) * d^n), where c = 0.02749202171174083217... is the root of the equation -1 + 18*c + 552*c^2 + 4232*c^3 = 0 and d = 0.2849201454990266329... is the root of the equation -1 + 4*d - 4*d^2 + 8*d^3 = 0. - Vaclav Kotesovec, May 01 2014

A239366 Triangular array read by rows: T(n,k) is the number of palindromic compositions of n having exactly k 1's, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 3, 0, 3, 0, 1, 0, 1, 2, 1, 1, 2, 1, 0, 0, 1, 5, 0, 5, 0, 4, 0, 1, 0, 1, 3, 2, 3, 2, 1, 3, 1, 0, 0, 1, 8, 0, 10, 0, 7, 0, 5, 0, 1, 0, 1, 5, 3, 5, 5, 4, 3, 1, 4, 1, 0, 0, 1, 13, 0, 18, 0, 16, 0, 9, 0, 6, 0, 1, 0, 1, 8, 5, 10, 8, 7, 9, 5, 4, 1, 5, 1, 0, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 20 2014

Keywords

Comments

Row sums = 2^floor(n/2).
T(n,0) = A053602(n-1) for n>0, T(n,1) = A079977(n-5) for n>4, T(2n+1,3) = A006367(n-1) for n>0, both bisections of column k=2 contain A010049. - Alois P. Heinz, Mar 21 2014

Examples

			1,
0, 1,
1, 0, 1,
1, 0, 0, 1,
2, 0, 1, 0, 1,
1, 1, 1, 0, 0, 1,
3, 0, 3, 0, 1, 0, 1,
2, 1, 1, 2, 1, 0, 0, 1,
5, 0, 5, 0, 4, 0, 1, 0, 1,
3, 2, 3, 2, 1, 3, 1, 0, 0, 1
There are eight palindromic compositions of 6: T(6,0)=3 because we have: 6, 3+3, 2+2+2.  T(6,2)=3 because we have: 1+4+1, 2+1+1+2, 1+2+2+1.  T(6,4)=1 because we have: 1+1+2+1+1. T(6,6)=1 because we have: 1+1+1+1+1+1.
		

Programs

  • Maple
    b:= proc(n) option remember;  `if`(n=0, 1, expand(
          add(b(n-j)*`if`(j=1, x^2, 1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))
        (add(b(i)*`if`(n-2*i=1, x, 1), i=0..n/2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Mar 21 2014
  • Mathematica
    nn=15;Table[Take[CoefficientList[Series[((1+x)*(1-x+x^2+x*y-x^2*y))/(1-x^2-x^4-x^2*y^2+x^4*y^2),{x,0,nn}],{x,y}][[n]],n],{n,1,nn}]//Grid

Formula

G.f.: G(x,y) = ((1 + x)*(1 - x + x^2 + x*y - x^2*y))/(1 - x^2 - x^4 - x^2*y^2 + x^4*y^2). Satisfies G(x,y) = 1/(1 - x) - x + y*x + (x^2/(1 - x^2) - x^2 +y^2*x^2)*G(x,y).
Previous Showing 11-13 of 13 results.