A113684
Expansion of x(1-x^2-x^3)/((1-x)(1-x-x^2))^2.
Original entry on oeis.org
0, 1, 4, 11, 25, 52, 102, 193, 356, 645, 1153, 2040, 3580, 6241, 10820, 18671, 32089, 54956, 93826, 159745, 271300, 459721, 777409, 1312176, 2211000, 3719617, 6248452, 10482323, 17562841, 29391460, 49132638, 82048705, 136884260
Offset: 0
A334658
Triangular array read by rows. T(n,k) is the number of length n words on alphabet {0,1} with k maximal runs of 0's having length 2 or more, n>=0, 0<=k<=nearest integer to n/3.
Original entry on oeis.org
1, 2, 3, 1, 5, 3, 8, 8, 13, 18, 1, 21, 38, 5, 34, 76, 18, 55, 147, 53, 1, 89, 277, 139, 7, 144, 512, 336, 32, 233, 932, 766, 116, 1, 377, 1676, 1670, 364, 9, 610, 2984, 3516, 1032, 50, 987, 5269, 7198, 2714, 215, 1, 1597, 9239, 14402, 6734, 785, 11
Offset: 0
1,
2,
3, 1,
5, 3,
8, 8,
13, 18, 1,
21, 38, 5,
34, 76, 18,
55, 147, 53, 1
T(6,2) = 5 because we have: 000100, 001000, 001001, 001100, 100100.
-
nn = 15; c[z_, u_] := ((1 - z^r)/(1 - z) + u z^r/(1 - z))*1/(1 - z ((1 - z^r)/(1 - z) + u z^r/(1 - z))) /. r -> 2; Map[Select[#, # > 0 &] &, CoefficientList[Series[c[z, u], {z, 0, nn}], {z, u}]] // Grid