cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A104132 Largest prime factor of pip(n)^pip(n)-1 where pip(n) is the n-th prime-indexed prime.

Original entry on oeis.org

13, 71, 1806113, 2699538733, 568972471024107865287021434301977158534824481, 5926187589691497537793497756719
Offset: 1

Views

Author

Cino Hilliard, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=Module[{p=Prime[Prime[n]]},FactorInteger[p^p-1][[-1,1]]]; Array[lpf,6] (* Harvey P. Dale, Nov 09 2017 *)
  • PARI
    piptopipm1(n) = { local(x, y); for(x=1, n, y=pip(x)^pip(x)-1; print1(bdiv(y)", "); ) }
    pip(n) = { return(prime(prime(n))) }
    bdiv(n) = { local(x); x=ifactor(n); return(x[length(x)]) }
    ifactor(n, m=0) = { local(f, j, k, flist); flist=[]; f=Vec(factor(n, m)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }

Formula

a(n) = A006530(A048861(A006450(n))). - Amiram Eldar, May 23 2020

Extensions

a(6) corrected by Harvey P. Dale, Nov 09 2017

A125571 Least prime factor of Sum_{k=0..n-1} n^k.

Original entry on oeis.org

3, 13, 5, 11, 7, 29, 3, 7, 11, 15797, 5, 53, 3, 11, 17, 10949, 7, 109912203092239643840221, 3, 43, 23, 461, 5, 11, 3, 109, 5, 59, 7, 568972471024107865287021434301977158534824481, 3, 67, 5, 31, 13, 149, 3, 7, 11, 83, 13, 173, 3, 19, 47
Offset: 2

Views

Author

Axel Harvey, Jan 02 2007

Keywords

Comments

The sequence of largest prime factors of numbers generated by the same sum is probably identical to sequence A006486, since (n^n - 1)/(1 + n^2 + ... + n^(n-1)) = n-1.

Examples

			The sum 1 + 4 + 4^2 + 4^3 = 85 = 5 * 17 so the third term is 5.
		

Crossrefs

Cf. A006486.
Least prime factors of A023037.

Programs

  • Mathematica
    Table[FactorInteger[Sum[n^k,{k,0,n-1}]][[1,1]],{n,2,46}] (* James C. McMahon, Dec 18 2024 *)
  • PARI
    a(n) = factor(sum(k=0, n-1, n^k))[1, 1]; \\ Michel Marcus, Aug 20 2013

Extensions

More terms from Michel Marcus, Aug 20 2013
Previous Showing 11-12 of 12 results.