cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 243 results. Next

A043535 Number of distinct base-8 digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007094.

A043626 Numbers whose base-8 representation has exactly 4 runs.

Original entry on oeis.org

520, 522, 523, 524, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 567, 568, 569, 570
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007094.

Programs

  • Mathematica
    Select[Range[600],Length[Split[IntegerDigits[#,8]]]==4&] (* Harvey P. Dale, Jun 18 2019 *)

A043941 Numbers k such that 1 and 4 occur juxtaposed in the base-8 representation of k but not of k+1.

Original entry on oeis.org

12, 33, 76, 103, 140, 161, 204, 225, 271, 289, 332, 353, 396, 417, 460, 481, 524, 545, 588, 615, 652, 673, 716, 737, 831, 844, 865, 908, 929, 972, 993, 1036, 1057, 1100, 1127, 1164, 1185, 1228, 1249, 1295, 1313, 1356, 1377
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007094.

Programs

  • Mathematica
    SequencePosition[Table[If[SequenceCount[IntegerDigits[n,8],{1,4}]>0 || SequenceCount[ IntegerDigits[n,8],{4,1}]>0 ,1,0],{n,1500}],{1,0}][[;;,1]] (* Harvey P. Dale, Feb 10 2024 *)

A044229 Numbers k such that string 5,2 occurs in the base 8 representation of k but not of k-1.

Original entry on oeis.org

42, 106, 170, 234, 298, 336, 362, 426, 490, 554, 618, 682, 746, 810, 848, 874, 938, 1002, 1066, 1130, 1194, 1258, 1322, 1360, 1386, 1450, 1514, 1578, 1642, 1706, 1770, 1834, 1872, 1898, 1962, 2026, 2090, 2154, 2218, 2282, 2346
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007094.

Programs

  • Mathematica
    A044229Q[k_] := StringContainsQ[IntegerString[k, 8], "52"] && StringFreeQ[IntegerString[k - 1, 8], "52"];
    Select[Range[5000], A044229Q] (* Paolo Xausa, Sep 03 2025 *)

A044232 Numbers k such that string 5,5 occurs in the base 8 representation of k but not of k-1.

Original entry on oeis.org

45, 109, 173, 237, 301, 360, 429, 493, 557, 621, 685, 749, 813, 872, 941, 1005, 1069, 1133, 1197, 1261, 1325, 1384, 1453, 1517, 1581, 1645, 1709, 1773, 1837, 1896, 1965, 2029, 2093, 2157, 2221, 2285, 2349, 2408, 2477, 2541
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007094.

Programs

  • Mathematica
    A044232Q[k_] := StringContainsQ[IntegerString[k, 8], "55"] && StringFreeQ[IntegerString[k - 1, 8], "55"];
    Select[Range[5000], A044232Q] (* Paolo Xausa, Sep 03 2025 *)

A044234 Numbers n such that string 5,7 occurs in the base 8 representation of n but not of n-1.

Original entry on oeis.org

47, 111, 175, 239, 303, 367, 376, 431, 495, 559, 623, 687, 751, 815, 879, 888, 943, 1007, 1071, 1135, 1199, 1263, 1327, 1391, 1400, 1455, 1519, 1583, 1647, 1711, 1775, 1839, 1903, 1912, 1967, 2031, 2095, 2159, 2223, 2287, 2351
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007094.

Programs

  • Mathematica
    SequencePosition[Table[If[SequenceCount[IntegerDigits[n,8],{5,7}]>0,1,0],{n,2500}],{0,1}][[;;,2]] (* Harvey P. Dale, Jul 10 2024 *)

Formula

a(n) = 512*(n-7)/9 + 376 when n == 7 mod 9; otherwise a(n) = 64*(n - floor((n+1)/9) - 1) + 47. - Bob Selcoe, Apr 01 2016

Extensions

Linear recurrence removed and terms a(54), a(126) etc. corrected by Georg Fischer, Jun 27 2019

A044236 Numbers k such that string 6,1 occurs in the base 8 representation of k but not of k-1.

Original entry on oeis.org

49, 113, 177, 241, 305, 369, 392, 433, 497, 561, 625, 689, 753, 817, 881, 904, 945, 1009, 1073, 1137, 1201, 1265, 1329, 1393, 1416, 1457, 1521, 1585, 1649, 1713, 1777, 1841, 1905, 1928, 1969, 2033, 2097, 2161, 2225, 2289, 2353
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007094.

Programs

  • Mathematica
    A044236Q[k_] := StringContainsQ[IntegerString[k, 8], "61"] && StringFreeQ[IntegerString[k - 1, 8], "61"];
    Select[Range[5000], A044236Q] (* Paolo Xausa, Sep 03 2025 *)

A044240 Numbers k such that string 6,5 occurs in the base 8 representation of k but not of k-1.

Original entry on oeis.org

53, 117, 181, 245, 309, 373, 424, 437, 501, 565, 629, 693, 757, 821, 885, 936, 949, 1013, 1077, 1141, 1205, 1269, 1333, 1397, 1448, 1461, 1525, 1589, 1653, 1717, 1781, 1845, 1909, 1960, 1973, 2037, 2101, 2165, 2229, 2293, 2357
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007094.

Programs

  • Mathematica
    A044240Q[k_] := StringContainsQ[IntegerString[k, 8], "65"] && StringFreeQ[IntegerString[k - 1, 8], "65"];
    Select[Range[5000], A044240Q] (* Paolo Xausa, Sep 03 2025 *)

A063431 Square array read by antidiagonals of n written in base k (n,k>0).

Original entry on oeis.org

1, 1, 11, 1, 10, 111, 1, 2, 11, 1111, 1, 2, 10, 100, 11111, 1, 2, 3, 11, 101, 111111, 1, 2, 3, 10, 12, 110, 1111111, 1, 2, 3, 4, 11, 20, 111, 11111111, 1, 2, 3, 4, 10, 12, 21, 1000, 111111111, 1, 2, 3, 4, 5, 11, 13, 22, 1001, 1111111111, 1, 2, 3, 4, 5, 10, 12, 20, 100
Offset: 1

Views

Author

Henry Bottomley, Jul 20 2001

Keywords

Comments

It is difficult to write ten in base 11 using decimal digits.

Examples

			Rows start (1, 1, 1, 1, 1,...), (11, 10, 2, 2, 2,...), (111, 11, 10, 3, 3,...), (1111, 100, 11, 10, 4,...), etc.
		

Crossrefs

A161675 Mersenne primes written in base 8.

Original entry on oeis.org

3, 7, 37, 177, 17777, 377777, 1777777, 17777777777, 177777777777777777777, 377777777777777777777777777777, 377777777777777777777777777777777777, 1777777777777777777777777777777777777777777
Offset: 1

Views

Author

Vladislav-Stepan Malakhovsky & Juri-Stepan Gerasimov, Jun 16 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Map[FromDigits[IntegerDigits[2^# - 1, 8]] &, MersennePrimeExponent[Range[12]]] (* Amiram Eldar, Oct 22 2024 *)

Formula

a(n) = A007094(A000668(n)).

Extensions

a(6) and a(10) corrected by R. J. Mathar, Aug 03 2009
Previous Showing 91-100 of 243 results. Next