cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A143599 E.g.f. satisfies: A(x) = exp( x*sqrt(A(x)/A(-x)) ).

Original entry on oeis.org

1, 1, 3, 10, 53, 316, 2527, 22072, 239689, 2774800, 38284091, 553477024, 9284250109, 161180444608, 3187413648343, 64638167906176, 1473221217774353, 34190645940363520, 882759869810501491, 23079229227696318976
Offset: 0

Views

Author

Paul D. Hanna, Aug 27 2008

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 53*x^4/4! + 316*x^5/5! +...
F(x) = sqrt(A(x)/A(-x)) = e.g.f. of A058014:
F(x) = 1 + x + 1*x^2/2! + 4*x^3/3! + 13*x^4/4! + 96*x^5/5! + 541*x^6/6! +...
where F(x) = exp(x*(F(x) + 1/F(x))/2).
G(x) = [sqrt(A(x)/A(-x)) + sqrt(A(-x)/A(x))]/2 = e.g.f. of A143601:
G(x) = 1 + x^2/2! + 13*x^4/4! + 541*x^6/6! + 47545*x^8/8! +...
where G(x) = cosh(x*G(x)).
S(x) = [sqrt(A(x)/A(-x)) - sqrt(A(-x)/A(x))]/2 = e.g.f. of A007106:
S(x) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + 686080*x^9/9! +...
where S(x) = sqrt(G(x)^2 - 1) and G(x) = e.g.f. of A143601.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=exp(x*sqrt(A/subst(A,x,-x))));n!*polcoeff(A,n)}

Formula

E.g.f.: A(x) = exp(x*exp(x*G(x))) where G(x) = cosh(x*G(x)) = e.g.f. of A143601.
E.g.f.: sqrt(A(x)/A(-x)) = F(x) = exp(x*[F(x) + 1/F(x)]/2) = e.g.f. of A058014.
E.g.f.: [sqrt(A(x)/A(-x)) + sqrt(A(-x)/A(x))]/2 = e.g.f. of A143601.
E.g.f.: [sqrt(A(x)/A(-x)) - sqrt(A(-x)/A(x))]/2 = e.g.f. of A007106.
E.g.f.: A(x) = H(x/2)^2 where H(x) = exp(x*H(x)/H(-x)) = e.g.f. of A143600.
E.g.f. satisfies: A(x/cosh(x)) = exp(x*exp(x)/cosh(x)). [From Paul D. Hanna, Aug 29 2008]
E.g.f. satisfies: -x*sqrt(x^2/log(y)^2) = log((x^2*y)/log(y)^2), where y=A(x). - Vaclav Kotesovec, Feb 26 2014
a(n) ~ c * n! * d^n / n^(3/2), where d = 1.5088795615383199289... is the root of the equation sqrt(1+1/d^2) = 1 + LambertW((1+sqrt(1+1/d^2))/exp(1 + sqrt(1+1/d^2))), and c = 7.98255033020099890281693169... if n is even, and c = 7.852067808737280621088934789... if n is odd. - Vaclav Kotesovec, Feb 26 2014

A274699 Number of varied unrooted labeled trees on n nodes, i.e., trees with unique vertex degree except for the leaves.

Original entry on oeis.org

1, 1, 3, 4, 65, 126, 637, 21344, 57465, 330850, 2023901, 156312432, 502733101, 3464645380, 21505493115, 194182086016, 28828634104193, 108228186522378, 842870098110349, 5690185704481040, 49492420589959221, 521939648330427580, 151814675979620347079, 642254623640191155552, 5633344428589261601425, 40942919469553204283076, 370068971963735972601207
Offset: 1

Views

Author

Marko Riedel, Jul 02 2016

Keywords

Crossrefs

Cf. A007106.

Formula

a(n) = (n-2)! Sum_{k=1..n-2} C(n,k) k! [u^k][z^{n-2}] Product_{q=1..n-2} (1 + u z^q/q!).

A294198 Labeled trees on n nodes with at least one node of degree two.

Original entry on oeis.org

0, 0, 3, 12, 120, 1200, 16380, 255696, 4726008, 99107280, 2346042600, 61706210280, 1788467429892, 56618211155688, 1944581982268380, 72019509651227040, 2861473883255362800, 121414006972684901664, 5479661140682410928592, 262122044885503316203320
Offset: 1

Views

Author

Marko Riedel, Feb 11 2018

Keywords

Examples

			When n=4 there are two types of trees: paths (24!/2  trees) or a star (4 trees) for a total of 4^(4-2) trees. Of these only the paths contain a vertex of degree 2 (2 in fact). When n=5 there are three types of trees: paths (5!/2 trees), a star (5 trees) or a fork (C(5,1) x C(4, 2) x 2) for a total of 5^(5-2) trees. Of these only the paths and the fork contain a vertex of degree 2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := (n-2)! Sum[Binomial[n, q] (-1)^(q+1) (n-q)^(n-2-q) / (n-2-q)!, {q, 1, n-2}]; Array[a, 20] (* Jean-François Alcover, Feb 15 2018 *)

Formula

a(n) = (n-2)!*Sum_{q=1..n-2} C(n,q)*(-1)^(q+1)*(n-q)^(n-2-q)/(n-2-q)! where n >= 2.

A143598 E.g.f.: A(x) = exp(x*sinh(x*G(x))) where G(x) = cosh(x*G(x)) is the e.g.f. of A143601.

Original entry on oeis.org

1, 2, 28, 1176, 103440, 15726880, 3684098496, 1232799974784, 558670427013376, 329559835063067136, 245462725323910487040, 225319148634038399801344, 249936012383478860884217856, 329609037187846742271984869376
Offset: 0

Views

Author

Paul D. Hanna, Aug 27 2008

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x^2/2! + 28*x^4/4! + 1176*x^6/6! + 103440*x^8/8! +...
A(x) = exp(x*F(x)) where F(x) = e.g.f. of A007106:
F(x) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + 686080*x^9/9! +...
A(x) = exp(x*sqrt(G(x)^2 - 1)) where G(x) = e.g.f. of A143601:
G(x) = 1 + x^2/2! + 13*x^4/4! + 541*x^6/6! + 47545*x^8/8! +...
A(x) = sqrt(H(x)*H(-x)) where H(x) = e.g.f. of A143599:
H(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 53*x^4/4! + 316*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=1+x*O(x^n));for(i=0,n,G=cosh(x*G));n!*polcoeff(exp(x*sqrt(G^2-1)),n)}

Formula

E.g.f.: A(x) = exp(x*F(x)) where F(x) is the e.g.f. of A007106.
E.g.f.: A(x) = sqrt(H(x)*H(-x)) where H(x) = exp(x*sqrt(H(x)/H(-x))) is the e.g.f. of A143599.
E.g.f. satisfies: A(x/cosh(x)) = exp(x*tanh(x)). [From Paul D. Hanna, Aug 29 2008]
Previous Showing 11-14 of 14 results.