A334644
a(n) is the total number of down steps between the third and fourth up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
Original entry on oeis.org
0, 0, 0, 83, 299, 1263, 6076, 31307, 168561, 936161, 5321611, 30804795, 180939408, 1075636912, 6459103704, 39120216196, 238692219923, 1465783144605, 9052278085129, 56185368932615, 350293215459915, 2192731008315015, 13775745283576920, 86831135890324875
Offset: 0
-
[binomial(3*n + 1, n)/(3*n + 1) + 4*sum([binomial(3*j + 2, j) * binomial(3*(n - j), n - j)/(3*j + 2)/(n - j + 1) for j in srange(1, 4)]) - 30*(n==3) if n >= 3 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334650
a(n) is the total number of down steps between the first and second up steps in all 3_2-Dyck paths of length 4*n.
Original entry on oeis.org
0, 6, 31, 158, 975, 6639, 48050, 362592, 2820789, 22460120, 182141553, 1499143282, 12490923757, 105150960654, 892973346300, 7640934031920, 65813450140017, 570160918044288, 4964875184429660, 43431741548248440, 381496856026500220, 3363457643008999635
Offset: 0
For n = 1, the 3_2-Dyck paths are DDUD, DUDD, UDDD. This corresponds to a(1) = 1 + 2 + 3 = 6 down steps between the 1st up step and the end of the path.
-
a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - Binomial[4*n + 2, n]/(n + 1) + 9 * Binomial[4*(n - 1), n - 1]/n - 6 * Boole[n == 1]; Array[a, 22, 0] (* Amiram Eldar, May 13 2020 *)
-
[3*binomial(4*n, n)/(n + 1) - binomial(4*n + 2, n)/(n + 1) + 9*binomial(4*(n - 1), n - 1)/n - 6*(n==1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 13 2020
A241262
Array t(n,k) = binomial(n*k, n+1)/n, where n >= 1 and k >= 2, read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 3, 5, 10, 6, 14, 42, 28, 10, 42, 198, 165, 60, 15, 132, 1001, 1092, 455, 110, 21, 429, 5304, 7752, 3876, 1020, 182, 28, 1430, 29070, 57684, 35420, 10626, 1995, 280, 36, 4862, 163438, 444015, 339300, 118755, 24570, 3542, 408, 45, 16796, 937365, 3506100, 3362260, 1391280, 324632, 50344, 5850, 570, 55
Offset: 1
Array begins:
1, 3, 6, 10, 15, 21, ...
2, 10, 28, 60, 110, 182, ...
5, 42, 165, 455, 1020, 1995, ...
14, 198, 1092, 3876, 10626, 24570, ...
42, 1001, 7752, 35420, 118755, 324632, ...
132, 5304, 57684, 339300, 1391280, 4496388, ...
etc.
- N. S. S. Gu, H. Prodinger, S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2
-
t[n_, k_] := Binomial[n*k, n+1]/n; Table[t[n-k+2, k], {n, 1, 10}, {k, 2, n+1}] // Flatten
Comments