cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A334644 a(n) is the total number of down steps between the third and fourth up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.

Original entry on oeis.org

0, 0, 0, 83, 299, 1263, 6076, 31307, 168561, 936161, 5321611, 30804795, 180939408, 1075636912, 6459103704, 39120216196, 238692219923, 1465783144605, 9052278085129, 56185368932615, 350293215459915, 2192731008315015, 13775745283576920, 86831135890324875
Offset: 0

Views

Author

Benjamin Hackl, May 12 2020

Keywords

Comments

For n = 3, there is no 4th up step, a(3) = 83 enumerates the total number of down steps between the 3rd up step and the end of the path.

Crossrefs

Programs

  • SageMath
    [binomial(3*n + 1, n)/(3*n + 1) + 4*sum([binomial(3*j + 2,  j) * binomial(3*(n - j), n - j)/(3*j + 2)/(n - j + 1) for j in srange(1, 4)]) - 30*(n==3) if n >= 3 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020

Formula

a(0) = a(1) = a(2) = 0 and a(n) = binomial(3*n+1, n)/(3*n+1) + 4*Sum_{j=1..3}binomial(3*j+2, j)*binomial(3*(n-j), n-j)/((3*j+2)*(n-j+1)) - 30*[n=3] for n > 2, where [ ] is the Iverson bracket.

A334650 a(n) is the total number of down steps between the first and second up steps in all 3_2-Dyck paths of length 4*n.

Original entry on oeis.org

0, 6, 31, 158, 975, 6639, 48050, 362592, 2820789, 22460120, 182141553, 1499143282, 12490923757, 105150960654, 892973346300, 7640934031920, 65813450140017, 570160918044288, 4964875184429660, 43431741548248440, 381496856026500220, 3363457643008999635
Offset: 0

Views

Author

Benjamin Hackl, May 13 2020

Keywords

Comments

A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
For n = 1, there is no 2nd up step, a(1) = 6 enumerates the total number of down steps between the 1st up step and the end of the path.

Examples

			For n = 1, the 3_2-Dyck paths are DDUD, DUDD, UDDD. This corresponds to a(1) = 1 + 2 + 3 = 6 down steps between the 1st up step and the end of the path.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - Binomial[4*n + 2, n]/(n + 1) + 9 * Binomial[4*(n - 1), n - 1]/n - 6 * Boole[n == 1]; Array[a, 22, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [3*binomial(4*n, n)/(n + 1) - binomial(4*n + 2, n)/(n + 1) + 9*binomial(4*(n - 1), n - 1)/n - 6*(n==1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 13 2020

Formula

a(0) = 0 and a(n) = 3*binomial(4*n, n)/(n+1) - binomial(4*n+2, n)/(n+1) + 9*binomial(4*(n-1), n-1)/n - 6*[n=1] for n > 0, where [ ] is the Iverson bracket.

A241262 Array t(n,k) = binomial(n*k, n+1)/n, where n >= 1 and k >= 2, read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 10, 6, 14, 42, 28, 10, 42, 198, 165, 60, 15, 132, 1001, 1092, 455, 110, 21, 429, 5304, 7752, 3876, 1020, 182, 28, 1430, 29070, 57684, 35420, 10626, 1995, 280, 36, 4862, 163438, 444015, 339300, 118755, 24570, 3542, 408, 45, 16796, 937365, 3506100, 3362260, 1391280, 324632, 50344, 5850, 570, 55
Offset: 1

Views

Author

Jean-François Alcover, Apr 18 2014

Keywords

Comments

About the "root estimation" question asked in MathOverflow, one can check (at least numerically) that, for instance with k = 4 and a = 1/11, the series a^-1 + (k - 1) + Sum_{n>=} (-1)^n*binomial(n*k, n+1)/n*a^n evaluates to the positive solution of x^k = (x+1)^(k-1).
Row 1 is A000217 (triangular numbers),
Row 2 is A006331 (twice the square pyramidal numbers),
Row 3 is A067047(3n) = lcm(3n, 3n+1, 3n+2, 3n+3)/12 (from column r=4 of A067049),
Row 4 is A222715(2n) = (n-1)*n*(2n-1)*(4n-3)*(4n-1)/15,
Row 5 is not in the OEIS.
Column 1 is A000108 (Catalan numbers),
Column 2 is A007226 left shifted 1 place,
Column 4 is A007228 left shifted 1 place,
Column 5 is A124724 left shifted 1 place,
Column 6 is not in the OEIS.

Examples

			Array begins:
    1,    3,     6,     10,      15,      21, ...
    2,   10,    28,     60,     110,     182, ...
    5,   42,   165,    455,    1020,    1995, ...
   14,  198,  1092,   3876,   10626,   24570, ...
   42, 1001,  7752,  35420,  118755,  324632, ...
  132, 5304, 57684, 339300, 1391280, 4496388, ...
  etc.
		

References

  • N. S. S. Gu, H. Prodinger, S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Binomial[n*k, n+1]/n; Table[t[n-k+2, k], {n, 1, 10}, {k, 2, n+1}] // Flatten
Previous Showing 21-23 of 23 results.