cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A356242 a(n) is the number of Fermat numbers dividing n, counted with multiplicity.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 2, 0, 1, 2, 0, 1, 1, 0, 0, 1, 2, 0, 3, 0, 0, 2, 0, 0, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 0, 0, 3, 0, 0, 1, 0, 2, 2, 0, 0, 3, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 3, 0, 0, 1, 0, 1, 4, 0, 0, 1, 2, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2022

Keywords

Comments

The multiplicity of a divisor d (not necessarily a prime) of n is defined in A169594 (see also the first formula).
A000244(n) is the least number k such that a(k) = n.
The asymptotic density of occurrences of 0 is 1/2.
The asymptotic density of occurrences of 1 is (1/2) * Sum_{k>=0} 1/(2^(2^k)+1) = (1/2) * A051158 = 0.2980315860... .

Crossrefs

Cf. A080307 (positions of nonzeros), A080308 (positions of 0's).

Programs

  • Mathematica
    f = Table[(2^(2^n) + 1), {n, 0, 5}]; a[n_] := Total[IntegerExponent[n, f]]; Array[a, 100]

Formula

a(n) = Sum_{k>=1} v(A000215(k), n), where v(m, n) is the exponent of the largest power of m that divides n.
a(A000215(n)) = 1.
a(A000244(n)) = a(A000351(n)) = a(A001026(n)) = n.
a(A003593(n)) = A112754(n).
a(n) >= A356241(n).
a(A051179(n)) = n.
a(A080307(n)) > 0 and a(A080308(n)) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(2^(2^k)) = 0.8164215090... (A007404).

A386537 Exponent of the highest power of 2 dividing the n-th number whose prime factorization exponents are all powers of 2 (A138302).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    exp2nQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &];
    IntegerExponent[Select[Range[200], exp2nQ], 2]
  • PARI
    isexp2n(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] >> valuation(f[i, 2], 2) > 1, return (0))); 1;}
    list(lim) = for(k = 1, lim, if(isexp2n(k), print1(valuation(k, 2), ", ")));

Formula

a(n) = A007814(A138302(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1 + Sum_{k>=0} (2^k + 1)/2^(2^k)) / (1 + Sum_{k>=0} 1/2^(2^k)) - 1 = 0.70550483007968767769... .

A232734 Decimal expansion of Integral {x=0..infinity} 1/2^(2^x) dx.

Original entry on oeis.org

5, 4, 6, 3, 0, 6, 8, 3, 5, 9, 5, 2, 4, 8, 2, 7, 4, 1, 7, 3, 6, 0, 9, 8, 7, 6, 9, 6, 2, 4, 1, 0, 1, 3, 8, 8, 9, 3, 7, 6, 3, 5, 5, 3, 9, 0, 8, 1, 6, 5, 9, 1, 3, 5, 4, 1, 6, 7, 8, 3, 3, 9, 9, 1, 7, 6, 1, 6, 3, 6, 8, 9, 8, 4, 1, 1, 9, 6, 5, 7, 6, 7, 6, 1, 7, 4, 1, 2, 2, 1, 6, 3, 4, 1, 0, 3, 9, 5, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Nov 29 2013

Keywords

Examples

			0.546306835952482741736098769624101388937635539081659135416783399176163689841...
		

Crossrefs

Cf. A007400, A007404 (sum instead of integral).

Programs

  • Mathematica
    RealDigits[-ExpIntegralEi[-Log[2]]/Log[2], 10, 100] // First
  • PARI
    eint1(log(2))/log(2) \\ Charles R Greathouse IV, Dec 02 2013

Formula

-Ei(-log(2))/log(2), where Ei is the exponential integral function.
Also equals (2*Integral_{x = 0..1/2} log(log(1/x)) dx - log(log(2)))/(2*log(2)).
From Peter Bala, Feb 05 2024: (Start)
Equals 1/log(2) * Integral_{x >= 1} 1/(x * 2^x) dx.
Equals 1/log(4) * Integral_{x = 0..1} 1/(log(2) - log(x)) dx.
Equals Integral_{x >= 1} log(x)/2^x dx = (log(2))^2 * Integral_{x >= 0} x*(2^x) /(2^(2^x)). See Gradsteyn and Ryzhik, Section 8.212, formulas (4) and (16). (End)

A085010 a(n)=2^(2^n)*sum(k=0,n,1/2^(2^k)).

Original entry on oeis.org

1, 3, 13, 209, 53505, 3506503681, 15060318633198616577, 277813843495134114797235287762174738433, 94535152227927400227782074307303551040545228366095741656402842333161034088449
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2003

Keywords

Crossrefs

Cf. A007404.

Formula

a(n)=A074854(2^n)=; a(n)=floor(c*2^(2^n)) where c=sum(k>=0, 1/2^(2^k))=0.81642150902...
a(n + 1) = 1 + a(n)*2^(2^n), a(0) = 1 [From Peter Moxey (pmoxey(AT)live.com), Mar 14 2010]

A339253 Decimal expansion of the unique real nontrivial zero of the Fredholm series, i.e., the complex equation Sum_{k>=0} z^(2^k) = 0 (negated).

Original entry on oeis.org

6, 5, 8, 6, 2, 6, 7, 5, 4, 3, 0, 0, 1, 6, 3, 9, 2, 2, 4, 1, 3, 4, 7, 2, 8, 3, 0, 5, 7, 9, 5, 0, 1, 6, 4, 5, 9, 4, 0, 9, 3, 2, 7, 9, 6, 2, 2, 0, 4, 3, 6, 5, 8, 7, 0, 6, 2, 8, 0, 4, 7, 7, 7, 7, 3, 7, 4, 5, 8, 6, 8, 2, 9, 9, 9, 7, 5, 1, 3, 0, 2, 2, 4, 0, 7, 5, 9
Offset: 0

Views

Author

Amiram Eldar, Nov 28 2020

Keywords

Comments

The trivial zero is z = 0.
This constant was found by Mahler (1980), who also found 3 pairs of conjugate complex zeros, and later (1982) 5 more pairs.
Zannier and Veneziano (2020) proved that there are infinitely many complex zeros in the complex unit disk.

Examples

			-0.65862675430016392241347283057950164594093279622043...
		

References

  • David Masser, Auxiliary Polynomials in Number Theory, Cambridge University Press, 2016. See pp. 27-29.

Crossrefs

Programs

  • Mathematica
    m = 10; RealDigits[x /. FindRoot[Sum[x^(2^k), {k, 0, m}] == 0, {x, -0.65}, WorkingPrecision -> 120], 10, 100][[1]]
Previous Showing 21-25 of 25 results.