cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A345137 a(1) = a(2) = 1; a(n+2) = Sum_{d|n, d < n} a(d).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 5, 1, 3, 2, 5, 1, 5, 1, 7, 2, 3, 1, 10, 2, 3, 2, 9, 1, 9, 1, 8, 2, 4, 3, 14, 1, 3, 2, 14, 1, 11, 1, 11, 4, 4, 1, 16, 2, 7, 3, 14, 1, 12, 3, 14, 2, 4, 1, 27, 1, 3, 4, 17, 3, 13, 1, 13, 3, 14, 1, 23, 1, 5, 4, 18, 3, 16, 1, 20, 4, 4, 1, 32, 4, 3, 3, 24, 1, 25, 3, 16, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = Sum[If[d < n - 2, a[d], 0], {d, Divisors[n - 2]}]; Table[a[n], {n, 1, 95}]
    nmax = 95; A[] = 0; Do[A[x] = x + x^2 (1 + Sum[A[x^k], {k, 2, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + x^2 * (1 + A(x^2) + A(x^3) + A(x^4) + ...).

A307992 G.f. A(x) satisfies: A(x) = x + x^2 * (1 + A(x) + 2*A(x^2) + 3*A(x^3) + ...).

Original entry on oeis.org

1, 1, 1, 3, 4, 9, 9, 20, 16, 38, 28, 61, 39, 110, 52, 149, 84, 225, 101, 317, 120, 454, 175, 543, 198, 823, 243, 940, 327, 1259, 356, 1601, 387, 2051, 515, 2270, 623, 3114, 660, 3373, 829, 4381, 870, 5145, 913, 6264, 1245, 6683, 1292, 8776, 1404, 9477, 1724
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, signum(n), (m->
          m*add(a(d)/d, d=numtheory[divisors](m)))(n-2))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, May 09 2019
  • Mathematica
    terms = 57; A[] = 0; Do[A[x] = x + x^2 (1 + Sum[k A[x^k], {k, 1, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    a[n_] := a[n] = SeriesCoefficient[x + x^2 (1 + Sum[a[k] x^k/(1 - x^k)^2, {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 57}]
    a[n_] := a[n] = Sum[d a[(n - 2)/d], {d, Divisors[n - 2]}]; a[1] = a[2] = 1; Table[a[n], {n, 1, 57}]

Formula

G.f.: x + x^2 * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^n)^2).
a(1) = a(2) = 1; a(n+2) = Sum_{d|n} d*a(n/d).

A346117 a(1) = a(2) = 1; a(n+2) = 1 + Sum_{d|n} a(d).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 11, 8, 17, 12, 24, 14, 38, 16, 47, 24, 64, 26, 83, 28, 110, 38, 125, 40, 174, 46, 191, 58, 241, 60, 289, 62, 353, 78, 380, 90, 490, 92, 519, 110, 640, 112, 723, 114, 851, 146, 892, 148, 1113, 156, 1177, 184, 1371, 186, 1500, 204, 1752, 234, 1813
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 05 2021

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local d; 1 + add(procname(d), d = numtheory:-divisors(n-2)) end proc:
    f(1):= 1: f(2):= 1:
    map(f, [$1..60]); # Robert Israel, Dec 02 2022
  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = 1 + Sum[a[d], {d, Divisors[n - 2]}]; Table[a[n], {n, 1, 60}]
    nmax = 60; A[] = 0; Do[A[x] = x + x^2 (1/(1 - x) + Sum[A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + x^2 * (1 / (1 - x) + A(x) + A(x^2) + A(x^3) + ...).

A293636 a(1) = a(2) = 1; a(n) = ( Sum_{i|(n-1)} a(i) ) + Sum_{j|(n-2)} a(j).

Original entry on oeis.org

1, 1, 3, 6, 12, 21, 39, 66, 114, 192, 324, 531, 888, 1452, 2382, 3891, 6363, 10329, 16833, 27303, 44349, 71907, 116625, 188859, 306114, 495615, 802632, 1299255, 2103504, 3404259, 5510376, 8917248, 14431590, 23353131, 37791414, 61150962, 98953434, 160115403, 259085673, 419218803
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[a[i], {i, Divisors[n - 1]}] + Sum[a[j], {j, Divisors[n - 2]}]; a[1] = a[2] = 1; Table[a[n], {n, 1, 40}]

Formula

a(n) ~ c*phi^n, where phi is the golden ratio (A001622) and c = 1.83226227102725... (conjecture).

A346034 a(1) = 1, a(2) = 0; a(n+2) = Sum_{d|n} mu(n/d) * a(d).

Original entry on oeis.org

1, 0, 1, -1, 0, -1, -1, -1, -2, 0, -3, 1, -4, 3, -5, 5, -5, 6, -6, 10, -7, 11, -6, 15, -7, 14, -7, 19, -5, 17, -6, 23, -7, 18, -4, 24, -2, 16, -3, 23, 1, 13, 0, 17, -1, 7, 7, 14, 6, -7, 7, 0, 12, -13, 11, -14, 15, -33, 21, -27, 20, -57, 19, -50, 29, -73, 34, -79, 33, -96
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 0; a[n_] := a[n] = Sum[MoebiusMu[(n - 2)/d] a[d], {d, Divisors[n - 2]}]; Table[a[n], {n, 1, 70}]
    nmax = 70; A[] = 0; Do[A[x] = x + x^2 Sum[MoebiusMu[k] A[x^k], {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + x^2 * Sum_{k>=1} mu(k) * A(x^k).
Previous Showing 11-15 of 15 results.