cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A334487 a(n) = p(n, 2)*p(n, 5)/p(n, 10) where p(n, b) is the period of repeating digits of 1/n in base b.

Original entry on oeis.org

1, 1, 4, 1, 4, 4, 3, 2, 36, 4, 25, 4, 8, 3, 8, 4, 8, 36, 9, 4, 6, 25, 11, 4, 20, 8, 108, 3, 14, 8, 1, 8, 50, 8, 12, 36, 432, 9, 8, 8, 80, 6, 28, 25, 72, 11, 23, 8, 21, 20, 8, 8, 208, 108, 50, 3, 18, 14, 29, 8, 30, 1, 6, 16, 8, 50, 44, 8, 22, 12, 5, 36, 81, 432, 40
Offset: 1

Views

Author

Michel Marcus, May 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_, p_] := MultiplicativeOrder[p, n/(p^IntegerExponent[n, p])]; a[n_] := f[n, 2] * f[n, 5] / MultiplicativeOrder[10, n / 2^IntegerExponent[n, 2] / 5^IntegerExponent[n, 5]]; Array[a, 100] (* Amiram Eldar, May 04 2020 *)
  • PARI
    a2(n) = znorder(Mod(2,n/2^valuation(n,2))); \\ A007733
    a5(n) = znorder(Mod(5,n/5^valuation(n,5))); \\ A007736
    a10(n) = znorder(Mod(10,n/2^valuation(n,2)/5^valuation(n,5))); \\ A007732
    a(n) = a2(n)*a5(n)/a10(n);

Formula

a(n) = A007733(n)*A007736(n)/A007732(n).

A334488 Numbers m for which p(m, 2)*p(m, 5) = p(m, 10), where p(m, b) is the period of repeating digits of 1/m in base b.

Original entry on oeis.org

1, 2, 4, 31, 62, 124, 601, 1202, 2404, 2593, 4808, 5186, 9616, 10372, 18631, 20744, 37262, 41488, 74524, 82976, 149048, 165952, 298096, 331904, 599479, 1198958, 2397916, 204700049, 409400098, 466344409, 668731841, 818800196, 932688818, 1023500245, 1337463682, 1554449047
Offset: 1

Views

Author

Michel Marcus, May 03 2020

Keywords

Comments

Numbers m such that A334487(m) = 1.

Crossrefs

Programs

  • PARI
    a2(n) = znorder(Mod(2,n/2^valuation(n,2))); \\ A007733
    a5(n) = znorder(Mod(5,n/5^valuation(n,5))); \\ A007736
    a10(n) = znorder(Mod(10,n/2^valuation(n,2)/5^valuation(n,5))); \\ A007732
    isok(m) = a2(m)*a5(m) == a10(m);

Extensions

a(28) from Jinyuan Wang, May 03 2020
a(29)-a(36) from Giovanni Resta, May 04 2020
Previous Showing 11-12 of 12 results.