cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A141828 a(n) = (n^4*a(n-1)-1)/(n-1) for n >= 2, with a(0) = 1, a(1) = 5.

Original entry on oeis.org

1, 5, 79, 3199, 272981, 42653281, 11055730435, 4424134795739, 2588750874763849, 2123099311165701661, 2358999234628557401111, 3453810779419670890966615, 6510747302004208690462157149, 15496121141045183700690805861049
Offset: 0

Views

Author

Peter Bala, Jul 09 2008

Keywords

Comments

For related recurrences of the form a(n) = (n^k*a(n-1)-1)/(n-1) see A001339, A007808 (both k = 2) and A141827 (k = 3). a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.

Crossrefs

Programs

  • Maple
    a := n -> n!^3*add((n-k+1)*(k^2+k+1)/k!^3, k = 0..n): seq(a(n), n = 0..16);
  • Mathematica
    nxt[{n_,a_}]:={n+1,((n+1)^4*a-1)/n}; Join[{1},NestList[nxt,{1,5},15][[All,2]]] (* Harvey P. Dale, Mar 12 2017 *)

Formula

Sum_{n>=0} a(n)*x^n/n!^3 = (1/(1-x)^2)*Sum_{n>=0} (n^2+n+1)*x^n/n!^3.
a(n) = n!^3*Sum_{k=0..n} (n-k+1)*(k^2+k+1)/k!^3.
a(n) = n*n!^3*(5 - Sum_{k=2..n} 1/(k!^3*k*(k-1))) for n > 0. [corrected by Jason Yuen, Jan 31 2025]
Congruence property: a(n) == (1+n+n^2+n^3) (mod n^4).
The recurrence a(n) = (n^3+n^2+n+2)*a(n-1) - (n-1)^3*a(n-2), n >= 2, shows that a(n) is always a positive integer. The sequence b(n) := n*n!^3 also satisfies the same recurrence with b(0) = 0, b(1) = 1. Hence we obtain the finite continued fraction expansion a(n)/(n*n!^3) = 5 - 1^3/(16 - 2^3/(41 - 3^3/(86 -...-(n-1)^3/(n^3+n^2+n+2)))), for n >= 1. a(n)*b(n+1) - b(n)*a(n+1) = n!^3.
Limit_{n->oo} a(n)/(n*n!^3) = Sum_{n>=0} (n^2+n+1)/n!^3 = 4.9367223378... .
Limit_{n->oo} a(n)/(n*n!^3) = 1 + Sum_{n>=0} 1/(Product_{k=0..n} A008620(k)).

A121298 Triangle read by rows: T(n,k) is the number of directed column-convex polyominoes of area n and height k (1<=k<=n; here by the height of a polyomino one means the number of lines of slope -1 that pass through the centers of the polyomino cells).

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 0, 5, 8, 0, 0, 3, 15, 16, 0, 0, 1, 17, 39, 32, 0, 0, 0, 15, 59, 95, 64, 0, 0, 0, 9, 75, 175, 223, 128, 0, 0, 0, 4, 78, 269, 479, 511, 256, 0, 0, 0, 1, 67, 358, 845, 1247, 1151, 512, 0, 0, 0, 0, 48, 419, 1300, 2461, 3135, 2559, 1024, 0, 0, 0, 0, 29, 432, 1801, 4224, 6813, 7679, 5631, 2048
Offset: 1

Views

Author

Emeric Deutsch, Aug 04 2006

Keywords

Comments

Row sums are the odd-subscripted Fibonacci numbers (A001519). Sum of terms in column k = A007808(k). Sum(k*T(n,k),k=0..n)=A121299(n).

Examples

			T(2,2)=2 because we have the vertical and the horizontal dominoes.
Triangle starts:
1;
0,2;
0,1,4;
0,0,5,8;
0,0,3,15,16;
0,0,1,17,39,32;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n<=0 or k<=0 then 0 elif n=1 and k=1 then 1 else T(n-1,k-1)+add(T(n-k,j),j=1..k-1)+add(T(n-j,k-1),j=1..k-1) fi end: for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n <= 0 || k <= 0, 0, n == 1 && k == 1, 1, True, T[n-1, k-1] + Sum[T[n-k, j], {j, 1, k-1}] + Sum[T[n-j, k-1], {j, 1, k-1}]];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 25 2024, after Maple program *)

Formula

T(n,k) = T(n-1,k-1)+Sum(T(n-k,j), j=1..k-1)+Sum(T(n-j,k-1), j=1..k-1).

A136129 Triangle read by rows: T(n,k) is the number of directed, vertically convex polyominoes of height n and area k (n<= k <=n(n+1)/2).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 4, 5, 3, 1, 0, 0, 0, 8, 15, 17, 15, 9, 4, 1, 0, 0, 0, 0, 16, 39, 59, 75, 78, 67, 48, 29, 14, 5, 1, 0, 0, 0, 0, 0, 32, 95, 175, 269, 358, 419, 432, 400, 334, 250, 166, 97, 49, 20, 6, 1, 0, 0, 0, 0, 0, 0, 64, 223, 479, 845, 1300, 1801, 2269, 2622, 2805, 2794, 2593
Offset: 1

Views

Author

Emeric Deutsch, Jan 21 2008

Keywords

Comments

Row n contains n(n+1)/2 terms. Row sums yield A007808. Column sums yield the odd-indexed Fibonacci numbers (A001519).

Examples

			Triangle starts:
1;
0,2,1;
0,0,4,5,3,1;
0,0,0,8,15,17,15,9,4,1;
0,0,0,0,16,39,59,75,78,67,48,29,14,5,1;
		

Crossrefs

Programs

  • Maple
    A:=t*z*(1-t)/(1-t-2*t*z+t^2*z): B:=t^2*z*(z-1)/((1-t-2*t*z+t^2*z)*(1-t*z)): Aser:=simplify(series(A,z=0,12)): Bser:=simplify(series(B,z=0,12)): for n to 12 do A[n]:=coeff(Aser,z,n): B[n]:=coeff(Bser,z,n) end do: P[1]:=A[1]: for n from 2 to 7 do P[n]:=sort(expand(simplify(A[n]+add(B[n-j]*P[j]*t^j,j=1..n-1)))) end do: for n to 7 do seq(coeff(P[n],t,j),j=1..(1/2)*n*(n+1)) end do;

Formula

G.f. G(t,z) satisfies G(t,z)=zt(1-t)/(1-t-2zt+zt^2) +z(z-1)t^2*G(t,tz)/[(1-t-2zt+zt^2)(1-zt)]
Previous Showing 11-13 of 13 results.