A086644
Permanent of the character table of the symmetric group S_n.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, -20834715303936, 602706855887546351616
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 26 2003
A325536
Sum of sums of omegas of parts over all integer partitions of n.
Original entry on oeis.org
0, 0, 1, 2, 6, 9, 19, 28, 51, 75, 119, 170, 261, 362, 525, 723, 1019, 1373, 1890, 2512, 3386, 4452, 5893, 7658, 10017, 12881, 16627, 21210, 27097, 34266, 43392, 54462, 68399, 85285, 106305, 131712, 163132, 200936, 247332, 303066, 370989, 452296, 550875, 668495
Offset: 0
The integer partitions of 5 are {(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1)} with products {5,4,6,3,4,2,1} with product 2880 with omega 9, so a(5) = 9.
A346788
Product over all partitions lambda of n of the product of distinct parts in lambda.
Original entry on oeis.org
1, 1, 2, 6, 48, 1440, 414720, 2090188800, 1155790798848000, 226483217146419609600000, 302971317675145105975227187200000000, 37917003542135076706761224377027811868672000000000000, 45800346382799680410294841758069930049013501333211737122406400000000000000000
Offset: 0
-
a:= n-> mul(i, i=map(x-> {x[]}[], combinat[partition](n))):
seq(a(n), n=0..12);
-
a[n_] := Times @@ Times @@@ Union /@ IntegerPartitions[n];
a /@ Range[0, 20] (* Jean-François Alcover, Aug 09 2021 *)
-
a(n) = vecprod(apply(x->vecprod(Set(x)), partitions(n))); \\ Michel Marcus, Aug 04 2021
Comments