cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A370974 A260850 sorted into increasing order and duplicates omitted.

Original entry on oeis.org

1, 2, 6, 20, 24, 120, 140, 858, 924, 1008, 1120, 1430, 10080, 11088, 12012, 22880, 176358, 388960, 1662804, 1750320, 3879876, 4056234, 9694845, 10029150, 10400600, 10816624, 33256080, 270415600, 280816200, 290845350, 300540195, 1037158320, 1452021648, 3181073742, 3267048708, 9617286240, 13784652882, 20583576819, 35263382880, 120880802196
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2024

Keywords

Comments

It seems very likely that there are no duplicates in A260850. Compare the proof of the analogous property of A008336.

Crossrefs

A374317 For any n > 0, let b_n(n+1) = 1, and for k = 1..n, if k divides b_n(k+1) then b_n(k) = b_n(k+1) / k otherwise b_n(k) = b_n(k+1) * k; a(n) = b_n(1).

Original entry on oeis.org

1, 2, 6, 6, 30, 20, 140, 70, 70, 7, 77, 8316, 108108, 858, 5720, 1430, 24310, 48620, 923780, 46189, 3879876, 176358, 4056234, 2704156, 676039, 104006, 312018, 44574, 1292646, 4308820, 133573420, 267146840, 2203961430, 259289580, 363005412, 3267048708
Offset: 1

Views

Author

Rémy Sigrist, Jul 04 2024

Keywords

Comments

This sequence is a variant of A008336; here we divide or multiply by numbers from n down to 1, there by numbers from 1 up to n.
Unlike A008336, this sequence contains several repeated terms.

Examples

			The first terms, alongside the corresponding sequences b_n, are:
  n   a(n)  b_n
  --  ----  ----------------------------------------------
   1     1  [1, 1]
   2     2  [2, 2, 1]
   3     6  [6, 6, 3, 1]
   4     6  [6, 6, 12, 4, 1]
   5    30  [30, 30, 60, 20, 5, 1]
   6    20  [20, 20, 40, 120, 30, 6, 1]
   7   140  [140, 140, 280, 840, 210, 42, 7, 1]
   8    70  [70, 70, 140, 420, 1680, 336, 56, 8, 1]
   9    70  [70, 70, 35, 105, 420, 84, 504, 72, 9, 1]
  10     7  [7, 7, 14, 42, 168, 840, 5040, 720, 90, 10, 1]
		

Crossrefs

Programs

  • PARI
    a(n) = { my (b = 1); forstep (k = n, 1, -1, if (b % k==0, b /= k, b *= k);); return (b); }

A140644 a(0)=1. a(n) = a(n-1)/d(n) if d(n) divides a(n-1). Otherwise, a(n) = a(n-1)*d(n). (d(n) is the number of positive divisors of n.).

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 24, 12, 3, 1, 4, 2, 12, 6, 24, 6, 30, 15, 90, 45, 270, 1080, 270, 135, 1080, 360, 90, 360, 60, 30, 240, 120, 20, 5, 20, 5, 45, 90, 360, 90, 720, 360, 45, 90, 15, 90, 360, 180, 18, 6, 1, 4, 24, 12, 96, 24, 3, 12, 3, 6, 72, 36, 9, 54, 378, 1512, 189, 378, 63
Offset: 0

Views

Author

Leroy Quet, Jul 08 2008

Keywords

Crossrefs

Cf. A008336.

Programs

  • Maple
    A140644 := proc(n) option remember ; local d ; if n = 0 then 1; else d := numtheory[tau](n) ; if A140644(n-1) mod d = 0 then RETURN( A140644(n-1)/d ) ; else RETURN( d*A140644(n-1) ) ; fi; fi; end: for n from 0 to 80 do printf("%d,",A140644(n)) ; od: # R. J. Mathar, Aug 08 2008
  • Mathematica
    nxt[{n_,a_}]:=Module[{d=DivisorSigma[0,n+1]},{n+1,If[Divisible[a,d], a/d, a*d]}]; Transpose[NestList[nxt,{0,1},70]][[2]] (* Harvey P. Dale, Jul 25 2015 *)

Extensions

Extended beyond a(20) by R. J. Mathar, Aug 08 2008

A195458 a(n) = floor(sqrt(n)) * a(n-1), starting with 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 96, 288, 864, 2592, 7776, 23328, 69984, 279936, 1119744, 4478976, 17915904, 71663616, 286654464, 1146617856, 4586471424, 18345885696, 91729428480, 458647142400, 2293235712000, 11466178560000, 57330892800000, 286654464000000
Offset: 1

Views

Author

Peter Luschny, Sep 18 2011

Keywords

Comments

a(n) = r(n+2)/sqrt(2); r(1) = sqrt(2); r(n) = r(n-1)/sqrt(n-1) if r(n-1) is a square else r(n) = r(n-1)*floor(sqrt(n-1).
A variation of Recamán's A008336.

Crossrefs

Cf. A008336.

Programs

  • Maple
    r := proc(n) option remember; if n = 1 then sqrt(2)
    elif type(r(n-1),square) then r(n-1)/sqrt(n-1)
    else r(n-1)*floor(sqrt(n-1)) fi end:
    A195458 := proc(n) r(n+2)/sqrt(2) end:
  • Mathematica
    a[1] = 1;
    a[n_] := a[n] = Floor[Sqrt[n]] a[n - 1]
    Table[a[n], {n, 20}] (* David Callan, Aug 14 2013 *)

Formula

a(n) = Product_{k=1..n} floor(sqrt(k)). - Ridouane Oudra, Feb 16 2023

Extensions

Better name from David Callan, Aug 14 2013

A323615 a(0) = 1; for n > 0, a(n) = floor(a(n-1)/n) if positive and not already in the sequence, otherwise a(n) = a(n-1)*n.

Original entry on oeis.org

1, 1, 2, 6, 24, 4, 24, 3, 24, 216, 21, 231, 19, 247, 17, 255, 15, 255, 14, 266, 13, 273, 12, 276, 11, 275, 10, 270, 9, 261, 8, 248, 7, 231, 7854, 224, 8064, 217, 5, 195, 7800, 190, 7980, 185, 8140, 180, 8280, 176, 8448, 172, 8600, 168, 8736, 164
Offset: 0

Views

Author

Jan Koornstra, Jan 20 2019

Keywords

Comments

Variation on A008336 using floor division and A076039 not allowing for values already in the sequence.

Examples

			a(5) = 4, since floor(24/5) = 4, which is positive and not already in the sequence.
a(6) = 24, since floor(4/6) = 0, hence not positive.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#1, If[And[#3 > 0, FreeQ[#1, #3]], #3, #2 #1[[-1]] ]] & @@ {#1, #2, Floor[#1[[-1]]/#2]} & @@ {#, Length@ #} &, {1}, 53] (* Michael De Vlieger, Jan 23 2019 *)
  • Python
    def a323615(n):
      seq = []
      for i in range(n + 1):
        if i == 0: x = 1
        else:
          x = seq[i - 1] // i
          if x in seq or x == 0: x = seq[i - 1] * i
        seq.append(x)
      return seq
    print(a323615(100))

A357839 a(n) is the greatest divisor > 1 of n which has already been listed, otherwise a(n) is the smallest number not yet listed; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 3, 2, 5, 4, 6, 2, 5, 4, 7, 6, 8, 5, 7, 2, 9, 8, 5, 2, 9, 7, 10, 10, 11, 8, 11, 2, 7, 9, 12, 2, 3, 10, 13, 7, 14, 11, 9, 2, 15, 12, 7, 10, 3, 13, 16, 9, 11, 14, 3, 2, 17, 15, 18, 2, 9, 16, 13, 11, 19, 17, 3, 14, 20, 18, 21, 2, 15, 19, 11
Offset: 1

Views

Author

Samuel Harkness, Oct 14 2022

Keywords

Comments

When n is prime, a(n) is the prime index (A000720).

Examples

			For n = 6 the set of all divisors of 6 greater than 1 is {2, 3, 6}. Also, the set of all a(n < 6) is {0, 1, 2, 3}. The greatest divisor of 6 (excluding 1) that has been listed is 3, so a(6) = 3.
		

Crossrefs

Programs

  • Mathematica
    a = 0; A = {a}; Do[s = Drop[Reverse[Divisors[n]], 1]; s = Drop[s, -1]; If[Length[s] >= 1, Do[If[MemberQ[A, Part[s, d]], AppendTo[A, Part[s, d]]; Break[]], {d, 1, Length[s]}], a++; AppendTo[A, a]], {n, 2, 77}] Print[A]
  • PARI
    first(n)=my(v=vector(n),m); forfactored(k=2,n, v[k[1]]=if(vecsum(k[2][,2])==1, m++, my(t); fordiv(k,d, if(d<=m, t=d)); t)); v \\ Charles R Greathouse IV, Oct 14 2022

A360300 a(n) is the least term in the n-th row of A360298.

Original entry on oeis.org

1, 2, 6, 24, 120, 20, 140, 630, 70, 7, 77, 924, 12012, 858, 5720, 12870, 218790, 12155, 230945, 46189, 969969, 176358, 4056234, 676039, 676039, 104006, 312018, 44574, 1292646, 1077205, 33393355, 66786710, 2203961430, 64822395, 90751353, 90751353, 3357800061
Offset: 1

Views

Author

Rémy Sigrist, Feb 02 2023

Keywords

Examples

			For n = 9:
- the 9th row of A360298 is (10080, 70, 5670, 4480, 362880),
- so a(9) = 70.
		

Crossrefs

Programs

  • PARI
    { for (n = 1, 37, if (n==1, r = [1], r = setunion(select(v -> v%n==0, r)/n, r*n)); print1 (r[1]", ")) }

Formula

a(n) <= A008336(n+1).
a(p) = p * a(p-1) for any prime number p.

A362698 For n > 1, if n appears in the sequence, a(n) = a(n-1) - n if nonnegative and not already in the sequence, otherwise a(n) = a(n-1) + n. Otherwise a(n+1) = a(n)/(n+1) if (n+1)|a(n), otherwise a(n)*(n+1), a(1) = 1 and a(2) = 1*2.

Original entry on oeis.org

1, 2, 6, 24, 120, 114, 798, 6384, 57456, 574560, 6320160, 526680, 6846840, 489060, 32604, 521664, 8868288, 159629184, 8401536, 168030720, 3528645120, 160392960, 3689038080, 3689038056, 92225951400, 2397874736400, 64742617882800, 1812793300718400, 52571005720833600
Offset: 1

Views

Author

Kelvin Voskuijl, Jul 07 2023

Keywords

Examples

			a(2) = 2, as a(1) = 1 and 1 times 2 is 2.
a(6) = 114, as a(3) = 6 = n, thus a(6) = a(5) - 6 =  114.
a(7) = 798, as a(6) = 114 and 7 times 114 is 798.
		

Crossrefs

Programs

Extensions

More terms from Michael De Vlieger, Aug 30 2023
Previous Showing 21-28 of 28 results.