cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A008496 a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 4, 8, 8, 8, 12, 18, 27, 27, 27, 36, 48, 64, 64, 64, 80, 100, 125, 125, 125, 150, 180, 216, 216, 216, 252, 294, 343, 343, 343, 392, 448, 512, 512, 512, 576, 648, 729, 729, 729, 810, 900, 1000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008382, A008497. - R. J. Mathar, Apr 16 2010

Programs

  • GAP
    List([0..55], n-> Int(n/5)*Int((n+1)/5)*Int((n+2)/5) ); # G. C. Greubel, Nov 08 2019
  • Magma
    [&*[Floor((n+j)/5): j in [0..2]]: n in [0..55]]; // G. C. Greubel, Nov 08 2019
    
  • Maple
    seq( mul(floor((n+j)/5), j=0..2), n=0..55); # G. C. Greubel, Nov 08 2019
  • Mathematica
    LinearRecurrence[{1,0,0,0,3,-3,0,0,0,-3,3,0,0,0,1,-1}, {0,0,0,0,0,1,1,1, 2,4,8,8,8,12,18,27},60] (* or *) Table[Times@@Thread[Floor[(n +{0,1,2} )/5]],{n,0,60}] (* Harvey P. Dale, Apr 09 2018 *)
    Product[Floor[(Range[55] +j-1)/5], {j,0,2}] (* G. C. Greubel, Nov 08 2019 *)
  • PARI
    vector(56, n, prod(j=0,2, (n+j-1)\5) ) \\ G. C. Greubel, Nov 08 2019
    
  • Sage
    [product(floor((n+j)/5) for j in (0..2)) for n in (0..55)] # G. C. Greubel, Nov 08 2019
    

Formula

From R. J. Mathar, Apr 16 2010: (Start)
a(n) = A002266(n)*A008497(n+1).
a(n) = a(n-1) +3*a(n-5) -3*a(n-6) -3*a(n-10) +3*a(n-11) +a(n-15) -a(n-16).
G.f.: x^5*(1+x+x^2)*(x^6-x^5+2*x^3-x+1)/((x^4+x^3+x^2+x+1)^3 *(x-1)^4). (End)
Previous Showing 11-11 of 11 results.