cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-72 of 72 results.

A338415 Triangle read by rows: T(n,m) = C(n+m+1,n)*C(2*n-m,n)*C(3*n+1,n)*C(4*n+2,2*m+1)/(2*(n+1)*C(2*n,n)*C(2*n+2*m+2,2*n)).

Original entry on oeis.org

1, 2, 2, 7, 18, 7, 30, 130, 130, 30, 143, 884, 1530, 884, 143, 728, 5880, 14896, 14896, 5880, 728, 3876, 38760, 131100, 193200, 131100, 38760, 3876, 21318, 254562, 1085238, 2153250, 2153250, 1085238, 254562, 21318, 120175, 1669800, 8627300, 21755800, 29370330, 21755800, 8627300, 1669800, 120175
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 25 2020

Keywords

Examples

			1,
2, 2,
7, 18, 7,
30, 130, 130, 30,
143, 884, 1530, 884, 143
		

Crossrefs

Programs

  • Maxima
    A(x,y) := ((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3)+(y^2+14*y+1)/((9*y^4-36*y^3+54*y^2+(-36)*y+9)*((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3))+(2*y+2)/(3*(y^2-2*y+1));
    taylor(A(x,y),x,0,7,y,0,7);
    
  • Maxima
    T(n,m):=(binomial(n+m+1,n)*binomial(2*n-m,n)*binomial(3*n+1,n)* binomial(4*n+2,2*m+1))/((2*n+2)*binomial(2*n,n)*binomial(2*n+2*m+2,2*n));

Formula

G.f. satisfies A(x,y)=x/(A(x,y)^2*y^2-2*A(x,y)^2*y-2*A(x,y)*y+A(x,y)^2-2*A(x,y)+1).
A(x,y) = ((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3)+(y^2+14*y+1)/((9*y^4-36*y^3+54*y^2+(-36)*y+9)*((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3))+(2*y+2)/(3*(y^2-2*y+1)).

A381199 a(n) = (4*n)!/((n!)^2*(2*n)!)*Sum_{k=0..n} binomial(n,k)^2*binomial(2*k,k).

Original entry on oeis.org

1, 36, 6300, 1718640, 575675100, 216636756336, 87874675224336, 37563969509352000, 16692217815436148700, 7642084994921759382000, 3582530520581922083974800, 1712083670316898167464884800, 831357643152788660610464490000, 409154554816583487288034143528000, 203690783136217174743485058666840000
Offset: 0

Views

Author

Stefano Spezia, Feb 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(4n)!/((n!)^2*(2n)!)*Sum[Binomial[n,k]^2Binomial[2k,k],{k,0,n}]; Array[a,15,0]

Formula

a(n) = (4*n)!*hypergeom([1/2, -n, -n], [1, 1], 4)/((n!)^2*(2*n)!).
D-finite with recurrence n^4*a(n) -4*(4*n-1)*(4*n-3)*(10*n^2-10*n+3)*a(n-1) +144*(4*n-5)*(4*n-3)*(4*n-7)*(4*n-1)*a(n-2)=0. - R. J. Mathar, Feb 18 2025
a(n) ~ 2^(6*n - 1/2) * 3^(2*n + 3/2) / (4*Pi^2*n^2). - Vaclav Kotesovec, May 29 2025
Previous Showing 71-72 of 72 results.