cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A381614 If n = Product (p_j^k_j) then a(n) = Product (max(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 3, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 9, 5, 26, 3, 14, 29, 30, 31, 5, 33, 34, 35, 6, 37, 38, 39, 15, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 6, 55, 21, 57, 58, 59, 30, 61, 62, 21, 6, 65, 66, 67, 34, 69, 70, 71, 9, 73
Offset: 1

Views

Author

Paolo Xausa, Mar 01 2025

Keywords

Examples

			a(18) = 6 because 18 = 2^1*3^2, max(2,1) = 2, max(3,2) = 3 and 2*3 = 6.
a(300) = 30 because 300 = 2^2*3^1*5^2, max(2,2) = 2, max(3,1) = 3, max(5,2) = 5 and 2*3*5 = 30.
		

Crossrefs

Programs

  • Mathematica
    A381614[n_] := Times @@ Max @@@ FactorInteger[n];
    Array[A381614, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, max(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

a(p) = p, for p prime.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065463 * Product_{p prime} (1 + 1/((p^2-1)*(p^2+p-1)*p^(2*p-2))) = 0.71628338157754073004... . - Amiram Eldar, Mar 07 2025

A306916 a(1)=1; for n > 1 replace each p^k in the prime factorization of n with prime(k)^p where prime(k) denotes the k-th prime number.

Original entry on oeis.org

1, 4, 8, 9, 32, 32, 128, 25, 27, 128, 2048, 72, 8192, 512, 256, 49, 131072, 108, 524288, 288, 1024, 8192, 8388608, 200, 243, 32768, 125, 1152, 536870912, 1024, 2147483648, 121, 16384, 524288, 4096, 243, 137438953472, 2097152, 65536, 800, 2199023255552, 4096
Offset: 1

Views

Author

Matthias Butterweck, Mar 16 2019

Keywords

Examples

			For n = 12288 = 2^12 * 3^1 one gets a(12288) = prime(12)^2 * prime(1)^3 = 37^2 * 2^3 = 10952 (12288 is the smallest n > a(n) that is not a power of 2).
		

Crossrefs

Cf. A008477 (replace p^k with k^p).

Programs

  • Mathematica
    f[p_, e_] := Prime[e]^p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 42] (* Amiram Eldar, Sep 14 2023 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, my(p = f[k,1]); f[k,1] = prime(f[k,2]); f[k,2] = p); factorback(f); \\ Michel Marcus, Mar 16 2019
  • Python
    from functools import reduce
    from operator import mul
    from sympy import factorint, prime
    def a(n):
        return 1 if n == 1 else reduce(mul, (prime(k)**p for p,k in factorint(n).items()))
    

Formula

Sum_{n>=1} 1/a(n) = Product_{m>=1} (1 + Sum_{k>=1} 1/prime(k)^prime(m)) = Product_{m>=1} (1 + P(prime(m))) = 1.78279963787539257806..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 14 2023, Oct 24 2023

Extensions

Keyword mult added by Rémy Sigrist, Mar 17 2019

A323785 Iteratively swap prime factors of n with their exponent (unless the exponent is 1), until a cycle is reached, and then record the largest term in the cycle.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 16, 19, 20, 21, 22, 23, 27, 32, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 32, 37, 38, 39, 45, 41, 42, 43, 44, 45, 46, 47, 48, 128, 32, 51, 52, 53, 54, 55, 63, 57, 58, 59, 60, 61, 62, 63, 32, 65, 66, 67
Offset: 1

Views

Author

Gabriel Antonius, Aug 31 2019

Keywords

Examples

			For n=196, the iterative procedure evolves as follows: 196 = 2^2 * 7^2 --> 2^2 * 2^7 = 2^9 --> 9^2 = 3^4 --> 4^3 = 2^6 --> 6^2 = 3^2 * 2^2 --> 2^3 * 2^2 = 2^5 --> 5^2 --> 2^5 = 32.
Since the iterative procedure stabilizes in the cycle 2^5=32 <--> 5^2=25, of length 2, the largest ,member of which is 32, we get a(196)=32.
		

Crossrefs

Cf. A008477.

Programs

  • Mathematica
    p[x_, y_] := If[y > 1, y^x, x^y]; f[n_] := Times @@ (p[First[#], Last[#]] & /@ FactorInteger[n]); a[n_] := Module[{k = n, s = {k}}, While[! MemberQ[s, (k = f[k])], AppendTo[s, k]]; ind = Position[s, ?(# == k &)][[1, 1]]; Max[s[[ind ;; -1]]]]; Array[a, 57] (* _Amiram Eldar, Sep 02 2019 *)
  • Python
    def a(n):
        np = swap_prime_factors_with_exponents(n)
        npp = swap_prime_factors_with_exponents(np)
        return max(n, np) if n == npp else a(npp)
    def swap_prime_factors_with_exponents(n):
        np = 1
        for p in primes:
            q = 0
            while n % p == 0:
                q += 1
                n = n // p
            if q > 1: np *= q ** p
            if q == 1: np *= p
        if n > 1: np *= n
        return np
    N = 200
    primes = []
    for n in range(2, int(N ** (1/2)) + 1):
        if all(n % p > 0 for p in primes):
            primes.append(n)
    for n in range(1,N+1):
        print(n, a(n))

A039784 phi(n) is equal to the product of the dual prime-power components of n.

Original entry on oeis.org

1, 2, 12, 48, 5832
Offset: 1

Views

Author

Keywords

Examples

			phi(5832)=1944, 5832=2^3*3^6, (3^2)*(6^3)=1944.
		

Crossrefs

Extensions

No others < 7*10^7. - Naohiro Nomoto, Jun 23 2001
Previous Showing 21-24 of 24 results.