cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A349971 Array read by ascending antidiagonals, A(n, k) = -(-n)^k*FallingFactorial(1/n, k) for n, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 15, 0, 1, 4, 21, 80, 105, 0, 1, 5, 36, 231, 880, 945, 0, 1, 6, 55, 504, 3465, 12320, 10395, 0, 1, 7, 78, 935, 9576, 65835, 209440, 135135, 0, 1, 8, 105, 1560, 21505, 229824, 1514205, 4188800, 2027025, 0
Offset: 1

Views

Author

Peter Luschny, Dec 21 2021

Keywords

Examples

			Array starts:
[1] 1, 0,   0,    0,      0,       0,         0,           0, ... A000007
[2] 1, 1,   3,   15,    105,     945,     10395,      135135, ... A001147
[3] 1, 2,  10,   80,    880,   12320,    209440,     4188800, ... A008544
[4] 1, 3,  21,  231,   3465,   65835,   1514205,    40883535, ... A008545
[5] 1, 4,  36,  504,   9576,  229824,   6664896,   226606464, ... A008546
[6] 1, 5,  55,  935,  21505,  623645,  21827575,   894930575, ... A008543
[7] 1, 6,  78, 1560,  42120, 1432080,  58715280,  2818333440, ... A049209
[8] 1, 7, 105, 2415,  74865, 2919735, 137227545,  7547514975, ... A049210
[9] 1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, ... A049211
Triangle starts:
[1] [1]
[2] [1, 0]
[3] [1, 1,  0]
[4] [1, 2,  3,   0]
[5] [1, 3, 10,  15,    0]
[6] [1, 4, 21,  80,  105,     0]
[7] [1, 5, 36, 231,  880,   945,      0]
[8] [1, 6, 55, 504, 3465, 12320,  10395,      0]
[9] [1, 7, 78, 935, 9576, 65835, 209440, 135135, 0]
		

Crossrefs

Programs

  • Magma
    [k eq n select 0^(n-1) else Round((n-k+1)^(k-1)*Gamma(k-1 + (n-k)/(n-k+1))/Gamma((n-k)/(n-k+1))): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 22 2022
  • Mathematica
    A[n_, k_] := -(-n)^k * FactorialPower[1/n, k]; Table[A[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 21 2021 *)
  • SageMath
    def A(n, k): return -(-n)^k*falling_factorial(1/n, k)
    def T(n, k): return A(n-k+1, k)
    for n in (1..9): print([A(n, k) for k in (1..8)])
    for n in (1..9): print([T(n, k) for k in (1..n)])
    

Formula

From G. C. Greubel, Feb 22 2022: (Start)
A(n, k) = n^(k-1)*Pochhammer((n-1)/n, k-1) (array).
T(n, k) = (n-k+1)^(k-1)*Pochhammer((n-k)/(n-k+1), k-1) (antidiagonal triangle).
T(2*n, n) = (-1)^(n-1)*A158886(n). (End)

A020035 Nearest integer to Gamma(n + 5/6)/Gamma(5/6).

Original entry on oeis.org

1, 1, 2, 4, 17, 80, 468, 3197, 25042, 221209, 2175217, 23564850, 278850730, 3578584369, 49503750432, 734305631413, 11626505830701, 195712848150141, 3490212458677514, 65732334638426516, 1303691303662125906
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 5/6)/Gamma(5/6) = 1, 5/6, 55/36, 935/216, 21505/1296, 623645/7776, 21827575/46656, 894930575/279936, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;

A144344 Second column (m=2) of triangle S2hat(-5) = A144342.

Original entry on oeis.org

1, 5, 80, 1210, 29205, 782595, 27002800, 1058476100, 48782479625, 2522622197425, 146681902699200, 9401689444974750, 661001092169312125, 50460675421190255375, 4160330180022220820000, 368146438283724242989000, 34808031903090390296900625
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A144342, A008543 (m=1 column).

Formula

a(n) = A144342(n+2,2), n>=0.

A144349 Second column (m=2) of triangle S2p(-5) = A013988.

Original entry on oeis.org

1, 15, 295, 7425, 229405, 8423415, 358764175, 17398082625, 946762033525, 57141470006775, 3788581132110775, 273749937606770625, 21411992601604730125, 1802522188780330392375, 162501272634914703865375, 15620379109661843174282625, 1594837561754271113467313125
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A013988, A008543(n-1) (m=1 column), A144350 (m=3 column).

Formula

a(n) = A013988(n+2,2), n>=0.
Previous Showing 21-24 of 24 results.