cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A358131 Triangle T(n,k) read by rows, where each row lists the value of n coins, in cents, using k dimes (10 cents) and n-k quarters (25 cents).

Original entry on oeis.org

0, 25, 10, 50, 35, 20, 75, 60, 45, 30, 100, 85, 70, 55, 40, 125, 110, 95, 80, 65, 50, 150, 135, 120, 105, 90, 75, 60, 175, 160, 145, 130, 115, 100, 85, 70, 200, 185, 170, 155, 140, 125, 110, 95, 80, 225, 210, 195, 180, 165, 150, 135, 120, 105, 90, 250, 235, 220, 205, 190
Offset: 0

Views

Author

Wesley Ivan Hurt, Oct 30 2022

Keywords

Examples

			Triangle begins
  n\k |   0    1    2    3    4    5    6    7    8    9   10
  ----|----------------------------------------------------------
   0  |   0
   1  |  25   10
   2  |  50   35   20
   3  |  75   60   45   30
   4  | 100   85   70   55   40
   5  | 125  110   95   80   65   50
   6  | 150  135  120  105   90   75   60
   7  | 175  160  145  130  115  100   85   70
   8  | 200  185  170  155  140  125  110   95   80
   9  | 225  210  195  180  165  150  135  120  105   90
  10  | 250  235  220  205  190  175  160  145  130  115  100
  ...
		

Crossrefs

Cf. A008592 (right diagonal), A008607 (1st column).
Cf. A351726.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = 10 k + 25 (n - k); Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

T(n,k) = 10*k + 25*(n-k), 0 <= k <= n.

A363436 Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2023

Keywords

Examples

			The array begins:
  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5,   6, ...
  0,  4,  8,  12,  16,  20,  24, ...
  0,  9, 18,  27,  36,  45,  54, ...
  0, 16, 32,  48,  64,  80,  96, ...
  0, 25, 50,  75, 100, 125, 150, ...
  0, 36, 72, 108, 144, 180, 216, ...
  ...
		

Crossrefs

Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.

Programs

  • Mathematica
    A[n_,k_]:=k n^2; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
Previous Showing 11-12 of 12 results.