cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A054771 Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, up to rotational symmetry.

Original entry on oeis.org

1, 3, 13, 43, 129, 327, 761, 1619, 3238, 6098, 10974, 18930, 31550, 50930, 80030, 122666, 183999, 270525, 390755, 555205, 777287, 1073297, 1463583, 1972533, 2630044, 3471508, 4539660, 5884564, 7565868, 9652788, 12226860, 15381924
Offset: 0

Views

Author

Vladeta Jovovic, May 18 2000

Keywords

Crossrefs

Row n=3 of A343874.

Formula

G.f.: (x^8 - 2*x^7 + 6*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 6*x^2 - 2*x + 1)/((1 - x^4)^2*(1 - x^2)^2*(1 - x)^5).

A054773 Number of nonnegative integer 4 X 4 matrices with sum of elements equal to n, up to rotational symmetry.

Original entry on oeis.org

1, 4, 36, 204, 980, 3876, 13596, 42636, 122666, 326876, 817388, 1931540, 4346404, 9360540, 19390548, 38779380, 75136675, 141430680, 259292440, 463991880, 811990680, 1391975640, 2341057896, 3867821640, 6285222804, 10056336264
Offset: 0

Views

Author

Vladeta Jovovic, May 19 2000

Keywords

Crossrefs

Row n=4 of A343874.
Cf. A008610.

Formula

G.f.: (x^16 - 4*x^15 + 28*x^14 - 12*x^13 + 76*x^12 + 60*x^11 + 196*x^10 - 44*x^9 + 422*x^8 - 44*x^7 + 196*x^6 + 60*x^5 + 76*x^4 - 12*x^3 + 28*x^2 - 4*x + 1)/ ((x - 1)^16*(x + 1)^8*(x^2 + 1)^4).

A032195 Number of necklaces with 10 black beads and n-10 white beads.

Original entry on oeis.org

1, 1, 6, 22, 73, 201, 504, 1144, 2438, 4862, 9252, 16796, 29414, 49742, 81752, 130752, 204347, 312455, 468754, 690690, 1001603, 1430715, 2016144, 2804880, 3856892, 5245128, 7060984, 9414328, 12440668, 16301164
Offset: 10

Views

Author

Keywords

Comments

The g.f. is Z(C_10,x)/x^10, the 10-variate cycle index polynomial for the cyclic group C_10, with substitution x[i]->1/(1-x^i), i=1,...,10. By Polya enumeration, a(n+10) is the number of cyclically inequivalent 10-necklaces whose 10 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_10,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 10; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)

Formula

"CIK[ 10 ]" (necklace, indistinct, unlabeled, 10 parts) transform of 1, 1, 1, 1...
G.f.: (x^10)*(1-3*x+4*x^2+12*x^3-8*x^4-x^5+31*x^6-4*x^8+16*x^9 +11*x^10 +3*x^11+8*x^12+4*x^13+4*x^14+x^15+x^16) /((1-x)^4*(1-x^2)^4 *(1-x^5)*(1-x^10)).
G.f.: (1/10)*x^10*(1/(1 - x)^10 + 1/(1 - x^2)^5 + 4/(1 - x^5)^2 + 4/(1 - x^10)^1). - Herbert Kociemba, Oct 22 2016

A032196 Number of necklaces with 11 black beads and n-11 white beads.

Original entry on oeis.org

1, 1, 6, 26, 91, 273, 728, 1768, 3978, 8398, 16796, 32066, 58786, 104006, 178296, 297160, 482885, 766935, 1193010, 1820910, 2731365, 4032015, 5864750, 8414640, 11920740, 16689036, 23107896, 31666376, 42975796
Offset: 11

Views

Author

Keywords

Comments

The g.f. is Z(C_11,x)/x^11, the 11-variate cycle index polynomial for the cyclic group C_11, with substitution x[i]->1/(1-x^i), i=1..11. By Polya enumeration, a(n+11) is the number of cyclically inequivalent 11-necklaces whose 11 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_11,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 11; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
    DeleteCases[CoefficientList[Series[(x^11) (1 - 9 x + 41 x^2 - 109 x^3 + 191 x^4 - 229 x^5 + 191 x^6 - 109 x^7 + 41 x^8 - 9 x^9 + x^10)/((1 - x)^10 (1 - x^11)), {x, 0, 39}], x], 0] (* Michael De Vlieger, Oct 10 2016 *)

Formula

"CIK[ 11 ]" (necklace, indistinct, unlabeled, 11 parts) transform of 1, 1, 1, 1...
G.f.: (x^11) * (1 - 9*x + 41*x^2 - 109*x^3 + 191*x^4 - 229*x^5 + 191*x^6 - 109*x^7 + 41*x^8 - 9*x^9 + x^10) / ((1-x)^10 * (1-x^11)).
a(n) = ceiling(binomial(n, 11)/n) (conjecture Wolfdieter Lang).
From Herbert Kociemba, Oct 11 2016: (Start)
This conjecture indeed is true.
Sketch of proof:
There are binomial(n,11) ways to place the 11 black beads in the necklace with n beads. If n is not divisible by 11 there are no necklaces with a rotational symmetry. So exactly n necklaces are equivalent up to rotation and there are binomial(n,11)/n = ceiling(binomial(n,11)/n) equivalence classes.
If n is divisible by 11 the only way to get a necklace with rotational symmetry is to space out the 11 black beads evenly. There are n/11 ways to do this and all ways are equivalent up to rotation. So there are binomial(n,11) - n/11 unsymmetric necklaces which give binomial(n,11)/n - 1/11 equivalence classes. If we add the single symmetric equivalence class we get Binomial(n,11)/n - 1/11 + 1 which also is ceiling(binomial(n,11)/n). (End)
G.f.: (10/(1 - x^11) + 1/(1 - x)^11)*x^11/11. - Herbert Kociemba, Oct 16 2016

A032197 Number of necklaces with 12 black beads and n-12 white beads.

Original entry on oeis.org

1, 1, 7, 31, 116, 364, 1038, 2652, 6310, 14000, 29414, 58786, 112720, 208012, 371516, 643856, 1086601, 1789515, 2883289, 4552275, 7056280, 10752060, 16128424, 23841480, 34769374, 50067108, 71250060, 100276894, 139672312
Offset: 12

Views

Author

Keywords

Comments

The g.f. is Z(C_12,x)/x^12, the 12-variate cycle index polynomial for the cyclic group C_12, with substitution x[i]->1/(1-x^i), i=1,...,12. Therefore by Polya enumeration a(n+12) is the number of cyclically inequivalent 12-necklaces whose 12 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_12,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 12; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)

Formula

"CIK[ 12 ]" (necklace, indistinct, unlabeled, 12 parts) transform of 1, 1, 1, 1...
G.f.: (x^12)*(1-3*x+7*x^2+9*x^3+18*x^4+38*x^5+72*x^6+92*x^7+168*x^8+160*x^9+238*x^10+230*x^11+296*x^12+234*x^13+330*x^14+248*x^15+284*x^16+238*x^17+230*x^18+166*x^19+172*x^20+78*x^21+80*x^22+38*x^23+21*x^24+7*x^25+3*x^26+x^27) /((1+x)*(1-x)*(1-x^2)*(1-x^3)*(1-x)^5*(1+x+x^2)*(1-x^4)^2*(1-x^6)*(1-x^12)). - Wolfdieter Lang, Feb 15 2005 (see comment)
G.f.: 1/12 x^12 ((1 - x)^-12 + (1 - x^2)^-6 + 2 (1 - x^3)^-4 + 2 (1 - x^4)^-3 + 2 (1 - x^6)^-2 + 4 (1 - x^12)^-1). - Herbert Kociemba, Oct 22 2016

A337747 Maximal number of 4-point circles passing through n points on a plane.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 6, 12, 14, 22, 30, 45
Offset: 1

Views

Author

Dmitry Kamenetsky, Sep 17 2020

Keywords

Comments

This is a variant of the orchard-planting problem that uses circles instead of straight lines.
The maximal number of 3-point circles passing through n points on a plane is binomial(n,3). Given an arrangement of n points in general position, any choice of three points defines a circle. - Peter Kagey, Oct 05 2020
Paul Panzer provides upper and lower bounds:
a(n) <= floor(n*(n-1)*(n-2)/24).
a(n) >= 2 + n*((n-2)*(n-2) + 4)/32 for n == 0 (mod 4) and n >= 8.
a(n) >= 2 + (n-1)*((n-1)*(n-5) + 16)/32 for n == 1 (mod 4) and n >= 9.
a(n) >= 2 + n*(n-2)*(n-2)/32 for n == 2 (mod 4) and n >= 10.
a(n) >= 2 + (n-1)*((n-3)*(n-3) + 16)/32 for n == 3 (mod 4) and n >= 11.
It seems that a(n) = n*((n-2)*(n-2) + 4)/32 + 2*A008610(n/2-4) if n == 0 (mod 4) and n >= 8. - Zhao Hui Du, Dec 14 2022
The number of 4-point circles passing through n points (2*cos(t_k), sin(t_k)) where t_k = (2k-1)*Pi/n, k=1,2,...,n is A008610(n-4), so A337747(n) >= A008610(n-4), so A337747(n) ~ n^3/24 for sufficiently large n. - Zhao Hui Du, Dec 15 2022

Examples

			See examples in links.
		

Crossrefs

Cf. A003035 (the original orchard problem), A006065.

Extensions

a(11) from Zhao Hui Du, Nov 22 2022
a(12) from Zhao Hui Du, Dec 01 2022
Previous Showing 11-16 of 16 results.