cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-53 of 53 results.

A083024 Molien series for action of SL(3,C) on ternary forms of degree 4.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 19, 29, 44, 67, 98, 139, 199, 275, 375, 509, 678, 890, 1165, 1501, 1916, 2431, 3053, 3801, 4711, 5788, 7063, 8580, 10353, 12420, 14841, 17633, 20850, 24565, 28807, 33641, 39161, 45404, 52455, 60427, 69372, 79392, 90627, 103143, 117065, 132561
Offset: 0

Views

Author

Benoit Cloitre, Jun 01 2003

Keywords

Comments

These are the coefficients of the expansion in powers of z^4, the other coefficients being zero.

References

  • J-M. Kantor, Où en sont les mathématiques. La formule de Molien-Weyl, SMF, Vuibert, p. 79

Crossrefs

Cf. A008615.

Programs

  • Maple
    seq(coeff(series( (1 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 3*x^11 + 4*x^12 + 4*x^13 + 3*x^14 + 4*x^15 + 3*x^16 + 2*x^17 + 3*x^18 + 2*x^19 + x^20 + x^21 + x^25)/(1 - x^1 - x^2 + x^5 + 2*x^7 - 2*x^9 - x^12 + x^14 - x^16 + x^18 + 2*x^21 - 2*x^23 - x^25 + x^28 + x^29 - x^30), x, n+1), x, n), n = 0..45); # Georg Fischer, Jan 24 2021
  • PARI
    a(n)=polcoeff((1+z^9+z^12+z^15+2*z^18+3*z^21+2*z^24+3*z^27+4*z^30+3*z^33 +4*z^36+4*z^39+3*z^42+4*z^45+3*z^48+2*z^51+3*z^54+2*z^57+z^60+z^63+z^75) /(1-z^3)/(1-z^6)/(1-z^9)/(1-z^12)/(1-z^15)/(1-z^18)/(1- z^27)+O(z^(n+1)),n)

Formula

G.f.: (1 + z^9 + z^12 + z^15 + 2*z^18 + 3*z^21 + 2*z^24 + 3*z^27 + 4*z^30 + 3*z^33 + 4*z^36 + 4*z^39 + 3*z^42 + 4*z^45 + 3*z^48 + 2*z^51 + 3*z^54 + 2*z^57 + z^60 + z^63 + z^75)/(1-z^3)/(1-z^6)/(1-z^9)/(1-z^12)/(1-z^15)/(1-z^18)/(1-z^27).

A165686 Dimension of the space of Siegel cusp forms of genus 2 and weight 2k which are not Saito-Kurokawa lifts of forms of genus 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 8, 11, 12, 14, 16, 19, 20, 24, 26, 29, 32, 37, 38, 44, 47, 51, 56, 62, 64, 72, 76, 82, 88, 96, 99, 109, 115, 122, 130, 140, 144, 157, 164, 173, 183, 195, 201, 216, 225, 236, 248, 263, 270, 288, 299, 312, 327, 344, 353, 374
Offset: 1

Views

Author

Kilian Kilger (kilian(AT)nihilnovi.de), Sep 26 2009

Keywords

Comments

Also the dimension of the largest Hecke-closed subspace of forms in S_k(Gamma_2) which satisfy the Ramanujan-Petersson conjecture. These forms are also characterized by the property that their (Andrianov) spinor zeta function does not have any pole.

Examples

			a(20)=1 because there is exactly one Siegel modular form of genus 2 and weight 20 which is not a lift of some form of genus 1.
		

References

  • M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhaeusser, 1985.
  • T. Oda, On the poles of Andrianov L-functions, Math. Ann. 256(3), p. 323-340, 1981.
  • R. Weissauer, The Ramanujan conjecture for genus two Siegel modular forms (an application of the trace formula). Preprint, Mannheim (1993)

Crossrefs

Cf. A165684 for the full space of Siegel cusp forms. See also A029143, A027640, A165685.

Formula

For k > 1 we have a(k) = A165684(k) - A008615(2k-5).
Conjectured G.f.: -x^10*(x^7+x^6-x^2-x-1) / ((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). - Colin Barker, Mar 30 2013

A319608 Irregular triangle read by rows: T(n,k) is the number of irreducible numerical semigroups with Frobenius number n and k minimal generators less than n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 1, 5, 2, 1, 4, 1, 1, 4, 2, 1, 4, 2, 1, 7, 6, 1, 1, 4, 2, 1, 8, 9, 2, 1, 5, 4, 1, 1, 7, 8, 2, 1, 8, 9, 2, 1, 10, 17, 7, 1, 1, 5, 6, 2, 1, 10, 19, 12, 2, 1, 10, 16, 7, 1, 1, 10, 21, 11, 2, 1, 9, 16, 9, 2, 1, 13, 34, 26, 8, 1, 1, 8, 15, 10, 2, 1, 14, 41, 37, 14, 2
Offset: 1

Views

Author

Christopher O'Neill, Sep 24 2018

Keywords

Comments

The length of each row is floor((n+1)/2) - floor(n/3).
Summing rows yields A158206.
The expected number of minimal generators of a randomly selected numerical semigroup S(M,p) equals Sum_{n=1..M} ( p * (1 - p)^(floor(n/2)) * Product_{k>=0} T(n,k)*p^k ).

Examples

			T(13,2) = 2, since {5,6,9} and {7,8,9,10,11,12} minimally generate irreducible numerical semigroups with Frobenius number 13.
When written in rows:
  1
  1
  1
  1
  1,  1
  1
  1,  2
  1,  1
  1,  2
  1,  2
  1,  4,  1
  1,  1
  1,  5,  2
  1,  4,  1
  1,  4,  2
  1,  4,  2
  1,  7,  6,  1
  1,  4,  2
  1,  8,  9,  2
  1,  5,  4,  1
  1,  7,  8,  2
  1,  8,  9,  2
  1, 10, 17,  7,  1
  1,  5,  6,  2
  1, 10, 19, 12,  2
  1, 10, 16,  7,  1
  1, 10, 21, 11,  2
  1,  9, 16,  9,  2
  1, 13, 34, 26,  8,  1
  1,  8, 15, 10,  2
		

Crossrefs

Previous Showing 51-53 of 53 results.