cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A329523 a(n) = n * (binomial(n + 1, 3) + 1).

Original entry on oeis.org

0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

The n-th centered n-gonal pyramidal number.

Examples

			Square array begins:
  (0), 1,  2,   3,   4,    5,  ... A001477
   0, (1), 3,   7,  14,   25,  ... A004006
   0,  1, (4), 11,  24,   45,  ... A006527
   0,  1,  5, (15), 34,   65,  ... A006003 (partial sums of A005448)
   0,  1,  6,  19, (44),  85,  ... A005900 (partial sums of A001844)
   0,  1,  7,  23,  54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.

Crossrefs

Programs

  • Magma
    [ n*(Binomial(n+1,3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
  • Mathematica
    Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]

Formula

G.f.: x * (1 - x + 5*x^2 - x^3) / (1 - x)^5.
E.g.f.: exp(x) * x * (1 + x + x^2 + x^3 / 6).
a(n) = n * (n + 2) * (n^2 - 2*n + 3) / 6.
a(n) = n * (A000292(n-1) + 1).
a(n) = n + 2 * Sum_{k=1..n} A000330(k-1).
a(n) + a(-n) = 4 * A002415(n).
Previous Showing 11-11 of 11 results.