cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 116 results. Next

A331746 Lexicographically earliest infinite sequence such that a(i) = a(j) => A009194(i) = A009194(j) and A331166(i) = A331166(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 18, 21, 24, 25, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 33, 37, 38, 39, 40, 41, 42, 43, 31, 44, 45, 46, 38, 47, 48, 49, 35, 41, 48, 50, 42, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 63, 71, 72, 73, 74, 75, 76, 66, 77, 78, 79, 80, 81, 82, 83, 56
Offset: 1

Views

Author

Antti Karttunen, Feb 04 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A009194(n), A331166(n)].
For all i, j:
a(i) = a(j) => A331747(i) = A331747(j).

Crossrefs

Programs

  • PARI
    \\ Needs also code from A331166.
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n, sigma(n));
    Aux331746(n) = [A009194(n),A331166(n)];
    v331746 = rgs_transform(vector(up_to, n, Aux331746(n)));
    A331746(n) = v331746[n];

A331747 Lexicographically earliest infinite sequence such that a(i) = a(j) => A009194(i) = A009194(j) and A278222(i) = A278222(j) for all i, j.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 5, 1, 3, 6, 7, 8, 7, 9, 10, 1, 3, 11, 7, 6, 12, 13, 14, 15, 7, 13, 16, 17, 14, 18, 19, 1, 11, 6, 7, 3, 12, 13, 14, 20, 12, 21, 22, 23, 24, 25, 26, 8, 7, 7, 27, 13, 22, 28, 29, 30, 14, 25, 29, 31, 26, 32, 33, 1, 3, 34, 7, 6, 35, 13, 14, 11, 12, 36, 22, 23, 22, 37, 26, 6, 12, 36, 22, 38, 39, 40, 41, 23, 22, 42, 43, 44, 45, 46, 47, 15, 7, 7, 27, 7
Offset: 1

Views

Author

Antti Karttunen, Feb 04 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A009194(n), A278222(n)].
For all i, j:
A331746(i) = A331746(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n, sigma(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1)));
    t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    Aux331747(n) = [A009194(n),A278222(n)];
    v331747 = rgs_transform(vector(up_to, n, Aux331747(n)));
    A331747(n) = v331747[n];

Formula

a(2^n) = 1 for all n >= 0.

A286570 Compound filter (prime signature of n & gcd(n, sigma(n))): a(n) = P(A046523(n), A009194(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 3, 10, 3, 61, 3, 36, 10, 27, 3, 117, 3, 27, 34, 136, 3, 103, 3, 90, 21, 27, 3, 619, 10, 27, 36, 753, 3, 625, 3, 528, 34, 27, 21, 666, 3, 27, 21, 552, 3, 625, 3, 117, 103, 27, 3, 1323, 10, 78, 34, 90, 3, 430, 21, 489, 21, 27, 3, 2545, 3, 27, 78, 2080, 21, 625, 3, 90, 34, 495, 3, 2773, 3, 27, 78, 117, 21, 625, 3, 1224, 136, 27, 3, 3801, 21, 27, 34, 375, 3
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A009194(n) = gcd(n, sigma(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286570(n) = (1/2)*(2 + ((A046523(n)+A009194(n))^2) - A046523(n) - 3*A009194(n));
    
  • Python
    from sympy import factorint, gcd, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), gcd(n, divisor_sigma(n))) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286570 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A009194 n)) 2) (- (A046523 n)) (- (* 3 (A009194 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A009194(n))^2) - A046523(n) - 3*A009194(n)).

A286591 Compound filter: a(n) = P(A009191(n), A009194(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 1, 1, 1, 23, 1, 10, 6, 5, 1, 42, 1, 5, 4, 1, 1, 34, 1, 5, 1, 5, 1, 179, 1, 5, 1, 408, 1, 23, 1, 3, 4, 5, 1, 45, 1, 5, 1, 144, 1, 23, 1, 12, 13, 5, 1, 12, 1, 3, 4, 5, 1, 23, 1, 113, 1, 5, 1, 265, 1, 5, 6, 1, 1, 23, 1, 5, 4, 5, 1, 103, 1, 5, 6, 12, 1, 23, 1, 65, 1, 5, 1, 753, 1, 5, 4, 63, 1, 259, 22, 12, 1, 5, 11, 265, 1, 3, 13, 1, 1, 23, 1, 44, 4, 5, 1
Offset: 1

Views

Author

Antti Karttunen, May 21 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A009191(n)+A009194(n))^2) - A009191(n) - 3*A009194(n)).

A319338 Filter sequence combining the 2-adic valuation of n (A007814) with gcd(n,sigma(n)) (A009194).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 6, 8, 9, 1, 10, 1, 11, 1, 6, 1, 12, 1, 6, 1, 13, 1, 4, 1, 14, 8, 6, 1, 3, 1, 6, 1, 15, 1, 4, 1, 7, 8, 6, 1, 16, 1, 2, 8, 11, 1, 4, 1, 17, 1, 6, 1, 18, 1, 6, 1, 19, 1, 4, 1, 11, 8, 6, 1, 20, 1, 6, 1, 7, 1, 4, 1, 21, 1, 6, 1, 13, 1, 6, 8, 22, 1, 23, 24, 7, 1, 6, 25, 26, 1, 2, 8, 3, 1, 4, 1, 27, 8
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A007814(n), A009194(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A009194(n) = gcd(n, sigma(n));
    v319338 = rgs_transform(vector(up_to,n,[A007814(n),A009194(n)]));
    A319338(n) = v319338[n];

A325633 a(n) = gcd(A009194(n), A325634(n)) = gcd(A009194(n), A091255(n, sigma(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2, 1, 4, 1, 1, 3, 2, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 28, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 5, 12, 1, 1, 1, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Crossrefs

Differs from A009194 for the first time at n=42, where a(42) = 2, while A009194(42) = 6.
Differs from A325632 and A325640 for the first time at n=45, where a(45) = 1, while A325632(45) = 5 and A325640(45) = 3.

Programs

Formula

a(n) = gcd(A009194(n), A325634(n)) = gcd(A009194(n), A091255(n, A000203(n))).

A331735 a(n) = A009194(A225546(n)) = gcd(A225546(n), sigma(A225546(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 3, 1, 12, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 12, 1, 9, 1, 4, 1, 1, 1, 10, 1, 3, 1, 1, 1, 1, 1, 12, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#, DivisorSigma[1, #]] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331735(n) = if(issquarefree(n),1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); gcd(prod(i=1,u,prime(i)^A048675(prods[i])), prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1))));

Formula

a(n) = A009194(A225546(n)) = gcd(A225546(n), A331733(n)).

A325383 Lexicographically earliest sequence such that a(i) = a(j) => A000203(i) = A000203(j) and A009194(i) = A009194(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 16, 20, 25, 26, 27, 28, 21, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 32, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 51, 67, 68, 69, 70, 71, 72, 73, 53, 74, 75, 64, 61, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 66
Offset: 1

Views

Author

Antti Karttunen, May 08 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A000203(n), A009194(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n,sigma(n));
    v325383 = rgs_transform(vector(up_to,n,[sigma(n),A009194(n)]));
    A325383(n) = v325383[n];

A325384 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A000203(n), A009194(n)] for all other numbers, except f(p) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 12, 14, 18, 19, 3, 20, 3, 21, 22, 23, 24, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 34, 35, 36, 37, 3, 38, 39, 40, 41, 42, 3, 43, 3, 44, 45, 46, 47, 48, 3, 49, 50, 51, 3, 52, 3, 53, 54, 55, 56, 57, 3, 58, 59, 49, 3, 60, 61, 62, 63, 64, 3, 65, 66, 67, 68, 51, 69, 70, 3, 71
Offset: 1

Views

Author

Antti Karttunen, May 08 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n,sigma(n));
    Aux325384(n) = if((n%2)&&isprime(n),0,[sigma(n),A009194(n)]);
    v325384 = rgs_transform(vector(up_to,n,Aux325384(n)));
    A325384(n) = v325384[n];

A325640 a(n) = A091255(n, A009194(n)) = A091255(n, gcd(n, sigma(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 2, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 1, 4, 1, 18, 1, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Crossrefs

Cf. A000203, A007691 (fixed points), A009194, A091255, A325634.
Differs from A325632 and A325633 for the first time at n=45, where a(45) = 3, while A325632(45) = 5 and A325633(45) = 1.

Programs

Formula

a(n) = A091255(n, A009194(n)) = A091255(n, gcd(n, sigma(n))).
Previous Showing 11-20 of 116 results. Next