cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A174169 A generalized Chebyshev transform of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, -1, -2, 0, 0, -3, 1, 8, 1, 1, 26, 7, -51, -3, 0, -264, -186, 348, -120, -285, 2697, 2871, -2304, 3393, 8029, -25795, -36872, 16108, -60010, -159683, 213795, 413712, -181857, 833779, 2669534, -1272977, -4030235, 3611168, -9145271, -39467427
Offset: 0

Views

Author

Paul Barry, Mar 10 2010

Keywords

Comments

Hankel transform is the (1,3) Somos-4 sequence A174170.

Formula

G.f.: (1-x+3x^2-sqrt(1-2x+3x^2-6x^3+9x^4))/(2x^2)=(1/(1+3x))*M(x/(1+3x^2)), M(x) the g.f. of A010006;
a(n) = sum{k=0..floor(n/2), (-3)^k*A001006(n-2k)}.
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +3*(n-1)*a(n-2) +3*(5-2*n)*a(n-3) +9*(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012

A174171 A generalized Chebyshev transform of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 4, 8, 25, 65, 197, 571, 1753, 5351, 16746, 52626, 167547, 536559, 1732272, 5622960, 18357211, 60205319, 198323708, 655787680, 2176141555, 7244106347, 24185285341, 80960692691, 271685400443, 913784117809, 3079889039230
Offset: 0

Views

Author

Paul Barry, Mar 10 2010

Keywords

Comments

Hankel transform is the (1,8) Somos-4 sequence A097495(n+2).

Crossrefs

Cf. A001006.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k] 2^k * Hypergeometric2F1[(1 - #)/2, -#/2, 2, 4] &[n - 2 k], {k, 0, Floor[n/2]}], {n, 0, 26}] (* Michael De Vlieger, Feb 02 2017, after Peter Luschny at A001006 *)

Formula

G.f.: (1-x-2*x^2-sqrt(1-2*x-7*x^2+4*x^3+4*x^4))/(2*x^2) = (1/(1-2*x))*M(x/(1-2*x^2)), M(x) the g.f. of A010006.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * 2^k * A001006(n-2k).
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +7*(1-n)*a(n-2) +2*(2*n-5)*a(n-3) +4*(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012
a(0) = a(1) = 1; a(n) = a(n-1) + 2 * a(n-2) + Sum_{k=0..n-2} a(k) * a(n-k-2). - Ilya Gutkovskiy, Nov 09 2021
a(n) ~ 17^(1/4) * (3 + sqrt(17))^(n+1) / (sqrt(Pi) * n^(3/2) * 2^(n+2)). - Vaclav Kotesovec, Nov 11 2021

A175197 Array A(k,n) of the number of points of the A_k lattice with maximum infinity norm n, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 2, 0, 1, 18, 12, 2, 0, 1, 50, 66, 18, 2, 0, 1, 140, 330, 146, 24, 2, 0, 1, 392, 1610, 1070, 258, 30, 2, 0, 1, 1106, 7742, 7580, 2500, 402, 36, 2, 0, 1, 3138, 37058, 52556, 23330, 4850, 578, 42, 2, 0, 1, 8952, 177186, 360402, 212436, 56252, 8350, 786
Offset: 0

Views

Author

R. J. Mathar, Mar 02 2010

Keywords

Comments

The values are computed starting with an auxiliary array which places the centered trinomial numbers A002426, the centered pentanomial numbers A005191, the centered 7-nomial numbers A025012 etc. into separate columns:
.1,....1,......1,.......1,........1,........1,.........1,.........1,.........1
.1,....3,......5,.......7,........9,.......11,........13,........15,........17
.1,....7,.....19,......37,.......61,.......91,.......127,.......169,.......217
.1,...19,.....85,.....231,......489,......891,......1469,......2255,......3281
.1,...51,....381,....1451,.....3951,.....8801,.....17151,.....30381,.....50101
.1,..141,...1751,....9331,....32661,....88913,....204763,....418503,....782153
.1,..393,...8135,...60691,...273127,...908755,...2473325,...5832765,..12354469
.1,.1107,..38165,..398567,..2306025,..9377467,..30162301,..82073295,.197018321
.1,.3139,.180325,.2636263,.19610233,.97464799,.370487485,1163205475,3164588407
This is a subarray of A077042. Rows are A005408, A003215, A063496, A083669 (see A077044) etc. The array A(k,n) is the first differences along each row of this auxiliary array.

Examples

			A(k,n) starts in row k=0, column n=0 as:
1,....0,......0,.......0,........0,........0,.........0,.........0,.........0
1,....2,......2,.......2,........2,........2,.........2,.........2,.........2
1,....6,.....12,......18,.......24,.......30,........36,........42,........48
1,...18,.....66,.....146,......258,......402,.......578,.......786,......1026
1,...50,....330,....1070,.....2500,.....4850,......8350,.....13230,.....19720
1,..140,...1610,....7580,....23330,....56252,....115850,....213740,....363650
1,..392,...7742,...52556,...212436,...635628,...1564570,...3359440,...6521704
1,.1106,..37058,..360402,..1907458,..7071442,..20784834,..51910994,.114945026
1,.3138,.177186,.2455938,.16973970,.77854566,.273022686,.792717990,2001382932
		

Crossrefs

Cf. A008458 (row k=2), A010006 (row k=3), A110907.
Previous Showing 11-13 of 13 results.