cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A278545 Number of neighbors of the n-th term in a full square array read by antidiagonals.

Original entry on oeis.org

3, 5, 5, 5, 8, 5, 5, 8, 8, 5, 5, 8, 8, 8, 5, 5, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5
Offset: 1

Views

Author

Omar E. Pol, Nov 23 2016

Keywords

Comments

Apart from the first row and the first column, the rest of the elements are 8's.
For the same idea but for a right triangle see A278480; for an isosceles triangle see A278481; for a square spiral see A010731; and for a hexagonal spiral see A010722.

Examples

			The corner of the square array begins:
3,5,5,5,5,5,5,5,5,5,...
5,8,8,8,8,8,8,8,8,...
5,8,8,8,8,8,8,8,...
5,8,8,8,8,8,8,...
5,8,8,8,8,8,...
5,8,8,8,8,...
5,8,8,8,...
5,8,8,...
5,8,...
5,...
...
		

Crossrefs

Antidiagonal sums give 3 together with the elements > 2 of A017089.

Programs

  • Maple
    3, seq(op([5,8$i,5]),i=0..20); # Robert Israel, Dec 04 2016

Formula

G.f. 3+x+8*x/(1-x)-3*(1+x)*Theta_2(0,sqrt(x))/(2*x^(1/8)) where Theta_2 is a Jacobi Theta function. - Robert Israel, Dec 04 2016

A349118 Row sums of a triangle based on A261327.

Original entry on oeis.org

1, 5, 3, 18, 8, 47, 18, 100, 35, 185, 61, 310, 98, 483, 148, 712, 213, 1005, 295, 1370, 396, 1815, 518, 2348, 663, 2977, 833, 3710, 1030, 4555, 1256, 5520, 1513, 6613, 1803, 7842, 2128, 9215, 2490, 10740, 2891, 12425, 3333, 14278, 3818, 16307, 4348, 18520, 4925
Offset: 2

Views

Author

Paul Curtz, Nov 08 2021

Keywords

Comments

The following triangle has A261327 as its diagonals:
1
5
1 2
5 13
1 2 5
5 13 29
1 2 5 10
5 13 29 53
1 2 5 10 17
5 13 29 53 85
...
a(0) = a(1) = 0.
a(n)'s final digit: neither 4 nor 9.
First full bisection difference table:
0, 1, 3, 8, 18, 35, 61, 98, ... = 0, A081489 = b(n)
1, 2, 5, 10, 17, 26, 37, 50, ... = A002522
1, 3, 5, 7, 9, 11, 13, 15, ... = A005408
2, 2, 2, 2, 2, 2, 2, 2, ... = A007395
0, 0, 0, 0, 0, 0, 0, 0, ... = A000004
Second full bisection difference table:
0, 5, 18, 47, 100, 185, 310, 483, ... = c(n)
5, 13, 29, 53, 85, 125, 173, 229, ... = A078370
8, 16, 24, 32, 40, 48, 56, 64, ... = A008590(n+1)
8, 8, 8, 8, 8, 8, 8, 8, ... = A010731
0, 0, 0, 0, 0, 0, 0, 0, ... = A000004
Both bisections are cubic polynomials.
c(-n) = -c(n).

Crossrefs

Cf. A002522, A005408, A007395, A078370, A081489 (first bisection).
Cf. also A008590, A010731, A261327.

Programs

  • Mathematica
    LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {1, 5, 3, 18, 8, 47, 18, 100}, 50] (* Amiram Eldar, Nov 08 2021 *)

Formula

G.f.: (5*x^5+2*x^4-2*x^3-x^2+5*x+1)/((x-1)^4*(x+1)^4).
Previous Showing 11-12 of 12 results.