cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A043509 Numbers having exactly one 5 in base 10.

Original entry on oeis.org

5, 15, 25, 35, 45, 50, 51, 52, 53, 54, 56, 57, 58, 59, 65, 75, 85, 95, 105, 115, 125, 135, 145, 150, 151, 152, 153, 154, 156, 157, 158, 159, 165, 175, 185, 195, 205, 215, 225, 235, 245, 250, 251, 252, 253, 254, 256, 257, 258, 259
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) ≍ n^k log n, with k = log 9/log 10 = 0.9542425... = A104139. - Charles R Greathouse IV, Nov 01 2022

A082834 Decimal expansion of Kempner series Sum_{k>=1, k has no digit 5 in base 10} 1/k.

Original entry on oeis.org

2, 1, 8, 3, 4, 6, 0, 0, 8, 1, 2, 2, 9, 6, 9, 1, 8, 1, 6, 3, 4, 0, 7, 2, 3, 5, 0, 4, 0, 6, 0, 9, 1, 8, 2, 7, 1, 7, 8, 4, 6, 5, 6, 7, 5, 1, 5, 0, 1, 3, 9, 1, 8, 2, 9, 1, 6, 7, 9, 3, 5, 9, 1, 8, 4, 2, 5, 0, 8, 6, 2, 6, 6, 8, 8, 2, 2, 9, 3, 8, 3, 5, 7, 7, 7, 2, 1, 3, 8, 3, 1, 9, 3, 2, 9, 2, 5, 4, 8, 8, 1, 3, 2, 4, 4
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Numbers with a digit 5 (A011535) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020

Examples

			21.83460081229691816340723504060918271784656751501391829167935918... - _Robert G. Wilson v_, Jun 01 2009
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A024101, A052413 (numbers with no '5'), A011535 (numbers with a '5').
Cf. A082830, A082831, A082832, A082833, A082835, A082836, A082837, A082838, A082839 (analog for digits 1, 2, ..., 9 and 0).

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive. - Robert G. Wilson v, Jun 01 2009 *)

Formula

Equals Sum_{k in A052413\{0}} 1/k, where A052413 = numbers with no digit 5. - M. F. Hasler, Jan 15 2020

Extensions

More terms from Robert G. Wilson v, Jun 01 2009
Minor edits by M. F. Hasler, Jan 13 2020

A293870 Numbers having '10' as substring of their digits.

Original entry on oeis.org

10, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 210, 310, 410, 510, 610, 710, 810, 910, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 10 of A292690 and A293869.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[1100],SequenceCount[IntegerDigits[#],{1,0}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 07 2019 *)
  • PARI
    is_A293870 = has(n, p=10, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293874 Numbers having '14' as substring of their digits.

Original entry on oeis.org

14, 114, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 214, 314, 414, 514, 614, 714, 814, 914, 1014, 1114, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1214, 1314, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 14 of A292690 and A293869.

Crossrefs

Cf. A292690, A293869. A121034 lists the terms which are divisible by 14.
Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "14"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293874 = has(n, p=14, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293875 Numbers having '15' as substring of their digits.

Original entry on oeis.org

15, 115, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 215, 315, 415, 515, 615, 715, 815, 915, 1015, 1115, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1215, 1315, 1415, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 15 of A292690 and A293869. A121035 lists the terms which are divisible by 15.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "15"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293875 = has(n, p=15, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293876 Numbers having '16' as substring of their digits / decimal expansion.

Original entry on oeis.org

16, 116, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 216, 316, 416, 516, 616, 716, 816, 916, 1016, 1116, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1216, 1316, 1416, 1516, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1613, 1614
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 16 of A292690 and A293869. A121036 lists the terms which are divisible by 16.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "16"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293876 = has(n, p=16, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293878 Numbers having '18' as substring of their digits / decimal expansion.

Original entry on oeis.org

18, 118, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 218, 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1218, 1318, 1418, 1518, 1618, 1718, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 16 of A292690 and A293869. A121038 lists the terms which are divisible by 18.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "18"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293878 = has(n, p=18, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293879 Numbers having '19' as substring of their digits.

Original entry on oeis.org

19, 119, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 219, 319, 419, 519, 619, 719, 819, 919, 1019, 1119, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1219, 1319, 1419, 1519, 1619, 1719, 1819, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 19 of A292690 and A293869. A121039 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000],SequenceCount[IntegerDigits[#],{1,9}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 11 2019 *)
  • PARI
    is_A293879 = has(n, p=19, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A062043 Positive numbers whose product of digits is 10 times their sum.

Original entry on oeis.org

459, 495, 549, 594, 945, 954, 1566, 1656, 1665, 2259, 2295, 2355, 2529, 2535, 2553, 2592, 2925, 2952, 3255, 3525, 3552, 5166, 5229, 5235, 5253, 5292, 5325, 5352, 5523, 5532, 5616, 5661, 5922, 6156, 6165, 6516, 6561, 6615, 6651, 9225, 9252, 9522
Offset: 1

Views

Author

Amarnath Murthy, Jun 28 2001

Keywords

Comments

A subsequence of A011535 as each term must include the digit 5. - Chai Wah Wu, Dec 09 2015

Examples

			594 belongs to the sequence as (5*9*4)/(5+9+4) = 180/18 = 10.
		

Crossrefs

Programs

  • Maple
    filter:= proc(t) local L;
      L:= convert(t,base,10);
      convert(L,`*`) = 10*convert(L,`+`)
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Sep 11 2022
  • Mathematica
    Select[Range[10000], Times @@ IntegerDigits[ # ] == 10 Plus @@ IntegerDigits[ # ] &] (* Tanya Khovanova, Dec 25 2006 *)
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==10*vecsum(d) \\ Mohammed Yaseen, Sep 11 2022
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return prod(d) == 10*sum(d)
    print([k for k in range(1, 9999) if ok(k)]) # Michael S. Branicky, Sep 11 2022

Extensions

More terms from Harvey P. Dale and Larry Reeves (larryr(AT)acm.org), Jul 06 2001

A293873 Numbers having '13' as substring of their digits.

Original entry on oeis.org

13, 113, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 213, 313, 413, 513, 613, 713, 813, 913, 1013, 1113, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1213, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 13 of A292690 and A293869. A121033 is the subsequence of multiples of 13.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[1350],SequenceCount[IntegerDigits[#],{1,3}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    is_A293873 = has(n, p=13, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022
Previous Showing 11-20 of 28 results. Next