A332678 Decimal expansion of (1/2) * (1 + 2/1 + 4/(2*1) + 8/(4*2*1) + ... ).
3, 1, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9, 1, 3, 3, 0, 8, 6
Offset: 1
Examples
3.1416325606551538662938427702254294342260615379567...
Programs
-
Maple
c:= sum(2^(j*(3-j)/2-1), j=0..infinity): evalf(c, 125); # Alois P. Heinz, Mar 03 2020
-
PARI
suminf(k=0, 2^(k-binomial(k,2)-1)) \\ Andrew Howroyd, Feb 21 2020
Formula
Equals (1/2)*Sum_{k>=0} 2^(k-binomial(k,2)). - Andrew Howroyd, Feb 21 2020
Equals A190405 +2.5 = A299998 +1.5. All digits the same but the first one or two. - R. J. Mathar, Mar 10 2020
Comments