cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 313 results. Next

A079442 Number of fixed points in range [A014137(n-1)..A014138(n)] of permutation A071663.

Original entry on oeis.org

1, 1, 0, 3, 0, 9, 0, 21, 0, 45, 0, 99, 0, 195, 0, 399, 0, 801, 0
Offset: 0

Views

Author

Antti Karttunen, Jan 27 2003

Keywords

Crossrefs

Occurs in A073202 as row 176609070820803.

Formula

For all n >= 0, a(2n+3)/3 = A079444(n).

Extensions

Name corrected by Antti Karttunen, Dec 13 2017

A081150 Number of even cycles in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

Original entry on oeis.org

0, 0, 1, 1, 3, 6, 18, 37, 95, 212, 528, 1226, 2936, 6822, 16212, 38081, 90717, 215414, 516358
Offset: 0

Views

Author

Wouter Meeussen and Antti Karttunen, Mar 10 2003

Keywords

Comments

For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.

Crossrefs

Formula

a(n) = A081157(n) + A081160(n) + A081162(n) = A057507(n) - A081148(n).

A085197 Positions of ones in A007001. Repeating part in each sub-permutation A082315[A014137(n-1)..A014138(n-1)] normalized to begin from 1.

Original entry on oeis.org

1, 3, 6, 8, 11, 15, 17, 20, 22, 25, 29, 31, 34, 38, 43, 45, 48, 50, 53, 57, 59, 62, 64, 67, 71, 73, 76, 80, 85, 87, 90, 92, 95, 99, 101, 104, 108, 113, 115, 118, 122, 127, 133, 135, 138, 140, 143, 147, 149, 152, 154, 157, 161, 163, 166, 170, 175, 177, 180, 182, 185, 189
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2003. Proposed by Wouter Meeussen Mar 15 2003

Keywords

Comments

From the second term 3 onward also one more than the partial sums of A076050.

Crossrefs

Cf. A085196. First column of A085180.

Programs

  • Mathematica
    PositionIndex[Nest[Flatten[Map[Range[#+1] &, #]] &, {1}, 6]][[1]] (* Paolo Xausa, Mar 04 2024 *)

Formula

a(n) = A080336(n-1) + n = A082854(A082315(A072795(A081291(n-1)))).
a(n) = n if n < 2, otherwise a(n-1)+A076050(n-1).

A089410 Least common multiple of all cycle sizes (also the maximum cycle size) in range [A014137(n-1)..A014138(n-1)] of permutation A074679/A074680.

Original entry on oeis.org

1, 1, 2, 5, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Crossrefs

Cf. A016825.

A086587 Least common multiple of cycle sizes in range [A014137(n-1)..A014138(n-1)] of permutations A085169/A085170.

Original entry on oeis.org

1, 1, 1, 2, 10, 90, 1260, 167580, 10345048560, 210224307704851440, 142378995493242911206243440, 4409130655192711420325660927780160, 308972448405145190275995459920449062174478109373358971999360
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

A089848 Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A089851/A089853.

Original entry on oeis.org

1, 1, 2, 2, 5, 15, 42, 132, 431, 1430, 4862, 16801, 58786, 208012, 742914, 2674440, 9694845, 35357712, 129644790, 477638700, 1767263322, 6564120420, 24466267020, 91482564069, 343059613650, 1289904147324, 4861946402882, 18367353072152
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

The number of n-node binary trees fixed by the corresponding automorphism(s).

Programs

Formula

a(0)=1, a(n) = A000108(n-1) if (n mod 3)=0 or 1 and a(n) = A000108(n-1)+A000108((n-2)/3) if (n mod 3)=2.

A081148 Number of odd cycles in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

Original entry on oeis.org

1, 1, 0, 1, 0, 4, 0, 9, 0, 24, 0, 62, 0, 162, 0, 447, 0, 1234, 0
Offset: 0

Views

Author

Wouter Meeussen and Antti Karttunen, Mar 10 2003

Keywords

Comments

For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.

Crossrefs

Formula

a(n) = A081153(n) + A081155(n) = A057507(n) - A081150(n).

A081151 Number of even cycles in range [A014137(2n-1)..A014138(2n-1)] of permutation A057505/A057506.

Original entry on oeis.org

0, 1, 3, 18, 95, 528, 2936, 16212, 90717, 516358, 2979992
Offset: 0

Views

Author

Wouter Meeussen and Antti Karttunen, Mar 10 2003

Keywords

Comments

Equal to the number of all cycles in the same range (after n>0).

Crossrefs

Formula

a(n) = A081150(2n) = A081158(n)+A001700(n-1) [where A001700(-1) is taken as 0 here] = A057507(2n) [After n>0].

A081157 Number of even cycles in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506, with no fixed points of either A057163 or A057164.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 8, 20, 60, 148, 402, 986, 2474, 5918, 14496, 34708, 84282, 202664, 492048
Offset: 0

Views

Author

Wouter Meeussen and Antti Karttunen, Mar 10 2003

Keywords

Crossrefs

A089411 Number of cycles in range [A014137(n-1)..A014138(n-1)] of permutation A074683/A074684.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 4, 11, 9, 6, 8, 14, 14, 12, 14, 19, 17, 16, 24, 26, 30
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

The number of orbits to which the corresponding automorphism(s) partitions the set of A000108(n) binary trees with n internal nodes. Does the non-monotone behavior continue indefinitely?

Crossrefs

Previous Showing 11-20 of 313 results. Next