A074080
Triangle T(n,k) (listed in order T(1,0), T(2,0), T(2,1), T(3,0), T(3,1), T(3,2), T(4,0), etc.) giving the number of 2^k-cycles that occur in the n-th sub-permutation of A069767/A069768 (i.e., in the range [A014137(n-1)..A014138(n-1)] inclusive).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 0, 3, 5, 3, 1, 1, 0, 3, 10, 9, 4, 1, 0, 1, 3, 17, 24, 14, 5, 1, 0, 1, 3, 28, 57, 44, 20, 6, 1, 0, 0, 5, 41, 128, 128, 71, 27, 7, 1, 0, 1, 4, 60, 271, 354, 234, 106, 35, 8, 1, 0, 0, 5, 81, 549, 937, 738, 384, 150, 44, 9, 1, 0, 0, 5, 106, 1061
Offset: 0
If we take the fifth such sub-permutation, i.e., the subsequence A069767[23..64]: [45,46,48,49,50,54,55,57,58,59,61,62,63,64,44,47,53,56,60,43,52,40,31,32,41,34,35,36,42,51,39,30,33,38,29,26,27,37,28,25,24,23], subtract 22 from each term and convert the resulting permutation of [1..42] to disjoint cycle notation, we get:
(17,31),(20,21,30,29),(3,26,12,40),(6,32,8,35,7,33,11,39),(15,22,18,34,16,25,19,38),(1,23,9,36,4,27,13,41,2,24,10,37,5,28,14,42)
which implies that T(5,0) = 0 (no fixed elements), T(5,1) = 1 (one transposition), T(5,2) = 2 (two 4-cycles), T(5,3) = 2 (two 8-cycles), T(5,4) = 1 (and one 16-cycle). It is guaranteed that only cycles whose length is a power of 2 occur in A069767/A069768.
Upper triangular region of the square array
A074079 (actually, only the area above its main diagonal, excluding also the leftmost column). T(n, k) =
A073430(n, k)/(2^k) [with the rightmost edge of
A073430 discarded]. Row sums:
A073431.
A000108(n) = Sum_{i=0..n-1} 2^i * T(n, i). Cf.
A073346,
A003056,
A002262.
A085197
Positions of ones in A007001. Repeating part in each sub-permutation A082315[A014137(n-1)..A014138(n-1)] normalized to begin from 1.
Original entry on oeis.org
1, 3, 6, 8, 11, 15, 17, 20, 22, 25, 29, 31, 34, 38, 43, 45, 48, 50, 53, 57, 59, 62, 64, 67, 71, 73, 76, 80, 85, 87, 90, 92, 95, 99, 101, 104, 108, 113, 115, 118, 122, 127, 133, 135, 138, 140, 143, 147, 149, 152, 154, 157, 161, 163, 166, 170, 175, 177, 180, 182, 185, 189
Offset: 1
-
PositionIndex[Nest[Flatten[Map[Range[#+1] &, #]] &, {1}, 6]][[1]] (* Paolo Xausa, Mar 04 2024 *)
A089410
Least common multiple of all cycle sizes (also the maximum cycle size) in range [A014137(n-1)..A014138(n-1)] of permutation A074679/A074680.
Original entry on oeis.org
1, 1, 2, 5, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78
Offset: 0
A086587
Least common multiple of cycle sizes in range [A014137(n-1)..A014138(n-1)] of permutations A085169/A085170.
Original entry on oeis.org
1, 1, 1, 2, 10, 90, 1260, 167580, 10345048560, 210224307704851440, 142378995493242911206243440, 4409130655192711420325660927780160, 308972448405145190275995459920449062174478109373358971999360
Offset: 0
Original entry on oeis.org
1, 1, 2, 2, 5, 15, 42, 132, 431, 1430, 4862, 16801, 58786, 208012, 742914, 2674440, 9694845, 35357712, 129644790, 477638700, 1767263322, 6564120420, 24466267020, 91482564069, 343059613650, 1289904147324, 4861946402882, 18367353072152
Offset: 0
A081157
Number of even cycles in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506, with no fixed points of either A057163 or A057164.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 8, 20, 60, 148, 402, 986, 2474, 5918, 14496, 34708, 84282, 202664, 492048
Offset: 0
Comments