cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A365097 Smallest k > 1 such that the total number of digits "1" required to write the numbers 1..k in base n is equal to k.

Original entry on oeis.org

2, 4, 25, 181, 421, 3930, 8177, 102772, 199981, 3179142, 5971945, 143610511, 210826981, 4754446846, 8589934561, 222195898593, 396718580701, 13494919482970, 20479999999961, 764527028941797, 1168636602822613, 41826814261329722, 73040694872113105, 2855533828630999398
Offset: 2

Views

Author

Andrew Pope, Aug 21 2023

Keywords

Comments

a(10) = A014778(3), being the smallest term > 1 there.
An upper bound is a(n) <= A226238(n) = u, since the digits of u show there are u 1's in numbers 1..u (in base n). - Kevin Ryde, Sep 28 2023

Examples

			For n=2, the first k=2 positive integers are 1 = 1_2 and 2 = 10_2, which have a total of two 1's, so a(2) = 2.
For n=3, the first k=4 positive integers, which are 1_3, 2_3, 10_3, and 11_3, have a total of four 1's, which is equal to k, so a(3) = 4.
For n=4, a total of 25 1's occur in the first k=25 positive integers (they occur in 1_4, 10_4, 11_4, 12_4, 13_4, 21_4, 31_4, 100_4, 101_4, 102_4, 103_4, 110_4, 111_4, 112_4, 113_4, 120_4, and 121_4 = 25), so a(4) = 25.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1, sum = 1}, While[sum == 1 || sum != k, k++; sum += Count[IntegerDigits[k, n], 1]]; k]; Array[a, 6, 2] (* Amiram Eldar, Aug 29 2023 *)
  • Python
    from itertools import count
    from sympy.ntheory.factor_ import digits
    def A365097(n):
        c, a, q, m = 1, 1, 0, 1
        for k in count(2):
            m += 1
            if m == n:
                m = 0
                q += 1
                a = digits(q,n).count(1)
            elif m==1:
                a += 1
            elif m==2:
                a -= 1
            c += a
            if c == k:
                return k # Chai Wah Wu, Sep 28 2023

Formula

For even n > 2, a(n) = 2*n^(n/2) - 2*n + 1. - Jon E. Schoenfield, Sep 30 2023

Extensions

a(11)-a(15) from Amiram Eldar, Aug 29 2023
a(16)-a(19) from Chai Wah Wu, Sep 29 2023
a(20)-a(25) from Jon E. Schoenfield, Sep 30 2023

A014885 n is equal to the number of 1's in all numbers <= n written in base 8.

Original entry on oeis.org

1, 8177, 8178, 8179, 8180, 8181, 8182, 8183, 8184, 8192, 8193, 49137, 49138, 49139, 49140, 49141, 49142, 49143, 49144, 90112, 90113, 322096, 1048576, 1048577, 1056753, 1056754, 1056755, 1056756, 1056757, 1056758, 1056759, 1056760, 1056768, 1056769, 1097713, 1097714, 1097715, 1097716, 1097717, 1097718, 1097719, 1097720, 1138688, 1138689, 2396744
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014778.

Programs

A014887 n is equal to the number of 1's in all numbers <= n written in base 7.

Original entry on oeis.org

1, 3930, 6044, 61879, 137256
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

List proved complete by Hugo van der Sanden (cf. A014886).

A014888 n is equal to the number of 4s in all numbers <= n written in base 7.

Original entry on oeis.org

761729, 761730, 823543, 1585272, 1585273, 1647086, 2408815, 2408816, 2470629, 3232358, 3232359
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

List proved complete by Hugo van der Sanden (cf. A014886).

A014889 n is equal to the number of 5s in all numbers <= n written in base 7.

Original entry on oeis.org

761664, 817499, 817500, 817507, 817508, 819609, 823543, 1585207, 1641042, 1641043, 1641050, 1641051, 1643152, 1647086, 2408750, 2464585, 2464586, 2464593, 2464594, 2466695, 2470629, 3232293, 3288128, 3288129, 3288136, 3288137, 3290238, 3294172, 4055836, 4111671, 4111672, 4111679, 4111680, 4113781
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014778.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,1,-1},{761664,817499,817500,817507,817508,819609,823543,1585207},34] (* Harvey P. Dale, Apr 14 2020 *)

Formula

a(n) = a(n-1) + a(n-7) - a(n-8) for 8 < n <= 34. - Chai Wah Wu, Jun 06 2016

Extensions

List proved complete by Hugo van der Sanden (cf. A014886).

A014890 n is equal to the number of 1's in all numbers <= n written in base 6.

Original entry on oeis.org

1, 421, 422, 423, 424, 425, 426, 432, 433, 1726, 3888, 3889, 4309, 4310, 4311, 4312, 4313, 4314, 4320, 4321, 9330
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014778.

Extensions

List proved complete by Hugo van der Sanden (cf. A014886).

A014891 n is equal to the number of 2's in all numbers <= n written in base 6.

Original entry on oeis.org

3878, 3879, 3880, 3881, 3882, 3883, 3888, 46656, 50534, 50535, 50536, 50537, 50538, 50539, 50544
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014778.

Programs

  • Mathematica
    Module[{nn=51000,d2},d2=Accumulate[DigitCount[#,6,2]&/@Range[nn]];Select[ Thread[ {Range[ nn],d2}],#[[1]]==#[[2]]&]][[;;,1]] (* Harvey P. Dale, Sep 04 2024 *)

Extensions

List proved complete by Hugo van der Sanden (cf. A014886).

A014892 n is equal to the number of 4s in all numbers <= n written in base 6.

Original entry on oeis.org

42768, 44921, 44922, 44923, 44924, 44925, 46656, 89424, 91577, 91578, 91579, 91580, 91581, 93312, 136080, 138233, 138234, 138235, 138236, 138237, 139968, 182736, 184889, 184890, 184891, 184892, 184893
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014778.

Extensions

List proved complete by Hugo van der Sanden (cf. A014886).

A014895 n is equal to the number of 3s in all numbers <= n written in base 5.

Original entry on oeis.org

2787, 2788, 2793, 2794, 2940, 3125, 5912, 5913, 5918, 5919, 6065, 6250, 9037, 9038, 9043, 9044, 9190
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014778.

Extensions

List proved complete by Hugo van der Sanden (cf. A014886).

A200863 List of numbers n without 1's in their decimal expansion such that n is equal to the total number of 1's in the decimal expansion of all positive numbers < n.

Original entry on oeis.org

200000, 2600000, 35000000, 35200000, 500000000, 502600000, 535000000, 535200000
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2011, based on a posting to the Sequence Fans Mailing List by Vladimir Shevelev, Nov 22, 2011

Keywords

Crossrefs

Cf. A014778.
Previous Showing 21-30 of 30 results.