cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A229463 Expansion of g.f. 1/((1-x)^2*(1-26*x)).

Original entry on oeis.org

1, 28, 731, 19010, 494265, 12850896, 334123303, 8687205886, 225867353045, 5872551179180, 152686330658691, 3969844597125978, 103215959525275441, 2683614947657161480, 69773988639086198495, 1814123704616241160886, 47167216320022270183053, 1226347624320579024759396
Offset: 0

Views

Author

Yahia Kahloune, Sep 24 2013

Keywords

Comments

This sequence was chosen to illustrate a method of solution.

Examples

			a(3) = (26^5 - 25*3 - 51)/625 = 19010.
		

Crossrefs

Programs

  • PARI
    my(x='x+O('x^18)); Vec(1/((1-26*x)*(1-x)^2)) \\ Elmo R. Oliveira, May 24 2025

Formula

a(n) = (26^(n+2) - 25*n - 51)/625.
In general, for the expansion of 1/((1-s*x)^2*(1-r*x)) with r>s>=1 we have the formula: a(n) = (r^(n+2)- s^(n+1)*((r-s)*n +(2*r-s)))/(r-s)^2.
From Elmo R. Oliveira, May 24 2025: (Start)
E.g.f.: exp(x)*(-51 - 25*x + 676*exp(25*x))/625.
a(n) = 28*a(n-1) - 53*a(n-2) + 26*a(n-3). (End)

A268414 a(n) = 5*a(n-1) - 2*n for n > 0, a(0) = 1.

Original entry on oeis.org

1, 3, 11, 49, 237, 1175, 5863, 29301, 146489, 732427, 3662115, 18310553, 91552741, 457763679, 2288818367, 11444091805, 57220458993, 286102294931, 1430511474619, 7152557373057, 35762786865245, 178813934326183, 894069671630871, 4470348358154309, 22351741790771497, 111758708953857435
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = k*b(n - 1) - m*n, with n > 0 and b(0)=1, is (1 - (m + 2)*x + x^2)/((1 - x)^2*(1 - k*x)). This recurrence gives the closed form b(n) = ((k^2 - k*(m + 2) + 1)*k^n + m*((k - 1)*n + k))/(k - 1)^2.

Crossrefs

Programs

  • Magma
    [(4*n + 3*5^n + 5)/8: n in [0..30]]; // Vincenzo Librandi, Feb 06 2016
  • Mathematica
    Table[(4 n + 3 5^n + 5)/8, {n, 0, 23}]
    LinearRecurrence[{7, -11, 5}, {1, 3, 11}, 24]
  • PARI
    Vec((1-4*x+x^2)/((1-x)^2*(1-5*x)) + O(x^100)) \\ Altug Alkan, Feb 04 2016
    

Formula

G.f.: (1 - 4*x + x^2)/((1 - x)^2*(1 - 5*x)).
a(n) = (4*n + 3*5^n + 5)/8.
Sum_{n>=0} 1/a(n) = 1.449934283402232875...
Lim_{n -> oo} a(n + 1)/a(n) = 5.
From Elmo R. Oliveira, Sep 10 2024: (Start)
E.g.f.: exp(x)*(3*exp(4*x) + 4*x + 5)/8.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 2. (End)

Extensions

a(24)-a(25) from Elmo R. Oliveira, Sep 10 2024
Previous Showing 11-12 of 12 results.