cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A260642 Numbers in A004782, n-1 | C(n-1), but not in A081767, n-1 | C(n), where C(n) = A000108(n) = 2n!/n!(n+1)! are the Catalan numbers.

Original entry on oeis.org

3, 7, 127, 511, 4095, 8191, 131071, 8388607, 33554431, 67108863, 2147483647, 8589934591, 137438953471, 2199023255551, 17592186044415, 35184372088831, 70368744177663, 281474976710655, 562949953421311, 36028797018963967, 72057594037927935
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2015

Keywords

Comments

It appears that all terms are of the form 2^k-1 ; see A260641 for the k-values.

Crossrefs

Formula

a(n) = 2^A260641(n)-1 = A000225(A260641(n)), i.e., equals A000225 o A260641.
Equals A004782 \ A081767.

A367782 Numbers k such that binomial(2*k,k) mod k is odd.

Original entry on oeis.org

33, 35, 51, 57, 65, 75, 85, 95, 105, 115, 117, 119, 129, 135, 147, 171, 175, 183, 185, 201, 219, 221, 225, 235, 237, 245, 247, 253, 255, 261, 279, 285, 291, 295, 301, 309, 319, 329, 333, 335, 341, 357, 365, 369, 377, 381, 385, 395, 399, 403, 415, 417, 423, 427, 453, 455, 471, 473, 481, 485, 489, 507
Offset: 1

Views

Author

Joerg Arndt, Nov 30 2023

Keywords

Comments

a(n) is odd since binomial(2*k,k) is even for k>0. - Chai Wah Wu, Nov 30 2023

Crossrefs

Cf. A059288 (binomial(2*n,n) mod n), A014847 (k such that binomial(2*k,k) mod k is zero).

Programs

  • Maple
    isa := n -> irem(irem(binomial(2*n, n), n), 2) = 1:
    select(isa, [seq(1..507, 2)]);  # Peter Luschny, Nov 30 2023
  • Mathematica
    A367782Q[n_]:=OddQ[Mod[Binomial[2n,n],n]];
    Select[Range[1000],A367782Q] (* Paolo Xausa, Dec 01 2023 *)
  • PARI
    for(n=1,510,if(bitand(binomial(2*n,n)%n,1),print1(n,", ")));
    
  • Python
    from math import comb
    from itertools import count, islice
    def A367782_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: (comb(n<<1,n)%n)&1, count(max(startvalue+(startvalue&1^1),1),2))
    A367782_list = list(islice(A367782_gen(),30)) # Chai Wah Wu, Nov 30 2023

A372898 Numbers k that divide the k-th Padovan number.

Original entry on oeis.org

1, 2, 4, 16, 25, 27, 59, 69, 101, 167, 173, 211, 223, 271, 307, 317, 347, 387, 422, 449, 463, 593, 599, 607, 634, 691, 694, 719, 809, 821, 829, 844, 853, 877, 883, 898, 926, 991, 997, 1097, 1117, 1151, 1163, 1181, 1197, 1198, 1231, 1319, 1369, 1388, 1451, 1453, 1481
Offset: 1

Views

Author

Amiram Eldar, May 16 2024

Keywords

Comments

Numbers k such that k | A000931(k).

Examples

			2 is a term since A000931(2) = 0 is divisible by 2.
27 is a term since A000931(27) = 351 = 13 * 27 is divisible by 27.
		

Crossrefs

Cf. A000931.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    With[{m = 1500}, Position[LinearRecurrence[{0, 1, 1}, {0, 0, 1}, m]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    lista(kmax) = {my(p1 = 0, p2 = 0, p3 = 1, p4); print1("1, 2, "); for(k = 4, kmax, p4 = p1 + p2; if(!(p4 % k), print1(k, ", ")); p1 = p2; p2 = p3; p3 = p4);}

A372899 Numbers k that divide the k-th companion Pell number.

Original entry on oeis.org

1, 2, 6, 18, 54, 66, 162, 198, 486, 594, 726, 1314, 1458, 1782, 2178, 2838, 3222, 3942, 4374, 5346, 5778, 5874, 6534, 7986, 8514, 8646, 9666, 11826, 13122, 14454, 16038, 17334, 17622, 19602, 23958, 25542, 25938, 28998, 31218, 35442, 35478, 39366, 43362, 48114
Offset: 1

Views

Author

Amiram Eldar, May 16 2024

Keywords

Comments

Numbers k such that k | A002203(k).

Examples

			2 is a term since A002203(2) = 6 = 2 * 3 is divisible by 2.
6 is a term since A002203(6) = 198 = 6 * 33 is divisible by 6.
		

Crossrefs

Cf. A002203.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    Select[Range[50000], Divisible[LucasL[#, 2], #] &]
  • PARI
    lista(kmax) = {my(p1 = 2, p2 = 6, p3); print1("1, 2, "); for(k = 3, kmax, p3 = p1 + 2*p2; if(!(p3 % k), print1(k, ", ")); p1 = p2; p2 = p3);}

A372900 Numbers k that divide the k-th term of Narayana's cows sequence.

Original entry on oeis.org

1, 6, 12, 52, 390, 650, 663, 2077, 11479, 31671, 41158, 43508, 104894, 123682, 127370, 170819, 175075, 191516, 266247, 274378, 327159, 341638, 366903, 383847, 733985, 1236087, 1755063, 1763775, 2277964, 2364654, 3165126, 6726156, 7007823, 7221084, 10903815
Offset: 1

Views

Author

Amiram Eldar, May 16 2024

Keywords

Comments

Numbers k such that k | A000930(k).

Examples

			6 is a term since A000930(6) = 6 is divisible by 6.
12 is a term since A000930(12) = 60 = 5 * 12 is divisible by 12.
		

Crossrefs

Cf. A000930.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    With[{m = 50000}, Position[LinearRecurrence[{1, 0, 1}, {1, 1, 2}, m]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    lista(kmax) = {my(nc1 = 1, nc2 = 1, nc3 = 2, nc4); print1("1, "); for(k = 4, kmax, nc4 = nc1 + nc3; if(!(nc4 % k), print1(k, ", ")); nc1 = nc2; nc2 = nc3; nc3 = nc4);}

A372901 Numbers k that divide the k-th central Delannoy number.

Original entry on oeis.org

1, 3, 9, 21, 27, 81, 171, 189, 217, 243, 297, 351, 729, 903, 1547, 2187, 3591, 3661, 4131, 5499, 5967, 6019, 6561, 7533, 8001, 11997, 13203, 14217, 15309, 17181, 19683, 20601, 22113, 22599, 23529, 24297, 25659, 26163, 26319, 26487, 28441, 30051, 33021, 37179, 37791
Offset: 1

Views

Author

Amiram Eldar, May 16 2024

Keywords

Comments

Numbers k such that k | A001850(k).

Examples

			3 is a term since A001850(3) = 63 = 3 * 21 is divisible by 3.
9 is a term since A001850(9) = 1462563 = 9 * 162507 is divisible by 9.
		

Crossrefs

Cf. A001850.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    Select[Range[1000], Divisible[LegendreP[#, 3], #] &]
  • PARI
    lista(kmax) = {my(cd0 = 1, cd1 = 3, cd2); print1("1, "); for(k = 2, kmax, cd2 = (3*(2*k-1)*cd1 - (k-1)*cd0)/k; if(!(cd2 % k), print1(k, ", ")); cd0 = cd1; cd1 = cd2);}

A372902 Numbers k that divide the k-th large Schröder number.

Original entry on oeis.org

1, 2, 6, 33, 42, 154, 198, 258, 270, 342, 850, 1170, 1666, 1806, 2295, 2574, 3262, 3366, 3834, 4070, 4654, 4970, 5439, 6006, 6118, 6162, 6699, 7095, 7254, 7497, 7595, 10241, 11475, 12642, 14014, 15345, 17470, 17670, 18018, 19845, 22446, 23994, 24570, 24651, 25245, 25974, 26334
Offset: 1

Views

Author

Amiram Eldar, May 16 2024

Keywords

Comments

Numbers k such that k | A006318(k).

Examples

			2 is a term since A001850(2) = 6 = 2 * 3 is divisible by 2.
6 is a term since A001850(6) = 1806 = 6 * 301 is divisible by 6.
		

Crossrefs

Cf. A006318.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{sc0 = 1, sc1 = 2, sc2, s = {1}}, Do[sc2 = ((6*k-3)*sc1 - (k-2)*sc0)/(k+1); If[Divisible[sc2, k], AppendTo[s, k]]; sc0 = sc1; sc1 = sc2, {k, 2, kmax}]; s]; seq[27000]
  • PARI
    lista(kmax) = {my(sc0 = 1, sc1 = 2, sc2); print1(1, ", "); for(k = 2, kmax, sc2 = ((6*k-3)*sc1 - (k-2)*sc0)/(k+1); if(!(sc2 % k), print1(k, ", ")); sc0 = sc1; sc1 = sc2);}

A372903 Numbers k that divide the k-th little Schroeder number.

Original entry on oeis.org

1, 33, 2295, 5439, 6699, 7095, 7497, 7595, 10241, 11475, 15345, 19845, 24651, 25245, 35845, 37725, 37791, 49203, 50463, 51183, 51471, 60291, 62073, 64337, 65569, 66495, 68313, 78793, 80223, 81809, 86031, 98167, 100659, 103293, 109395, 115245, 119067, 119919, 142137
Offset: 1

Views

Author

Amiram Eldar, May 16 2024

Keywords

Comments

Numbers k such that k | A001003(k).

Examples

			1 is a term since A001003(1) = 2 is divisible by 1.
33 is a term since A001003(33) = 37836272668898230450209 = 33 * 1146553717239340316673 is divisible by 33.
		

Crossrefs

Cf. A001003.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{sc0 = 1, sc1 = 1, sc2, s = {1}}, Do[sc2 = ((6*k-3)*sc1 - (k-2)*sc0)/(k+1); If[Divisible[sc2, k], AppendTo[s, k]]; sc0 = sc1; sc1 = sc2, {k, 2, kmax}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(sc0 = 1, sc1 = 1, sc2); print1(1, ", "); for(k = 2, kmax, sc2 = ((6*k-3)*sc1 - (k-2)*sc0)/(k+1); if(!(sc2 % k), print1(k, ", ")); sc0 = sc1; sc1 = sc2);}

A372904 Numbers k that divide the k-th central trinomial coefficient.

Original entry on oeis.org

1, 21, 387, 657, 6291, 16113, 25767, 54243, 56457, 96141, 155601, 294273, 300871, 453781, 653421, 660879, 669609, 951881, 993307, 1246077, 1438623, 1535409, 1870533, 2110941, 2510109, 2959173, 2974239, 3158541, 3242673, 3569337, 4139739, 4789273, 5405643, 7034097
Offset: 1

Views

Author

Amiram Eldar, May 16 2024

Keywords

Comments

Numbers k such that k | A002426(k).
Also, numbers k that divide the k-th Riordan number: k | A005043(k).
Apparently a subsequence of A266969.

Examples

			21 is a term since A002426(21) = 1105350729 = 21 * 52635749 is divisible by 21.
		

Crossrefs

Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    Select[Range[1000], Divisible[4^#*JacobiP[#, -# - 1/2, -# - 1/2, -1/2], #] &]
  • PARI
    lista(kmax) = {my(ct0 = 1, ct1 = 1, ct2); print1("1, "); for(k = 2, kmax, ct2 = ((2*k-1)*ct1 + 3*(k-1)*ct0)/k; if(!(ct2 % k), print1(k, ", ")); ct0 = ct1; ct1 = ct2);}

A372940 Numbers k that divide the k-th Franel number.

Original entry on oeis.org

1, 2, 10, 70, 410, 416, 464, 560, 610, 692, 976, 1840, 2512, 2815, 3712, 4187, 5888, 6026, 7192, 10556, 12064, 14560, 18368, 32704, 33580, 36424, 40016, 41944, 45400, 51940, 58115, 60416, 61544, 62930, 64288, 66976, 80320, 87232, 103247, 110026, 114802, 118400
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A000172(k).

Crossrefs

Cf. A000172.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{f0 = 1, f1 = 2, f2, s = {1}}, Do[f2 = ((7*k^2 - 7*k + 2)*f1 + 8*(k-1)^2*f0)/k^2; If[Divisible[f2, k], AppendTo[s, k]]; f0 = f1; f1 = f2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(f0 = 1, f1 = 2, f2); print1("1, "); for(k = 2, kmax, f2 = ((7*k^2 - 7*k + 2)*f1 + 8*(k-1)^2*f0)/k^2; if(!(f2 % k), print1(k, ", ")); f0 = f1; f1 = f2);}

Formula

2 is a term since A000172(2) = 10 = 2 * 5 is divisible by 2.
10 is a term since A000172(10) = 38165260 = 10 * 3816526 is divisible by 10.
Previous Showing 21-30 of 39 results. Next