A015092
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=8.
Original entry on oeis.org
1, 1, 9, 593, 304857, 1249312673, 40939981188777, 10732252327798007281, 22507185898866512901924729, 377607964391970470904956530918721, 50681683810611444451901001718927186370889
Offset: 0
G.f. = 1 + x + 9*x^2 + 593*x^3 + 304857*x^4 + 1249312673*x^5 + ...
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7), this sequence (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
a[n_] := a[n] = Sum[8^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
m = 11; ContinuedFractionK[If[i == 1, 1, -8^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015092(n)
A(8, n)
end # Seiichi Manyama, Dec 24 2016
A015093
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=9.
Original entry on oeis.org
1, 1, 10, 829, 606070, 3977651242, 234884294434900, 124827614155955343925, 597046858511123656669455550, 25700910736350654917922270058287454, 9957059456624152426469878400757673046606860
Offset: 0
G.f. = 1 + x + 10*x^2 + 829*x^3 + 606070*x^4 + 3977651242*x^5 + ...
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8), this sequence (q=9),
A015095 (q=10),
A015096 (q=11).
-
a[n_] := a[n] = Sum[9^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
m = 11; ContinuedFractionK[If[i == 1, 1, -9^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015093(n)
A(9, n)
end # Seiichi Manyama, Dec 24 2016
A015095
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=10.
Original entry on oeis.org
1, 1, 11, 1121, 1123331, 11235577641, 1123580257785051, 1123582505161487376561, 11235827298801257861061293171, 1123582752351801734250808539216885881
Offset: 0
G.f. = 1 + x + 11*x^2 + 1121*x^3 + 1123331*x^4 + 11235577641*x^5 + ...
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9), this sequence (q=10),
A015096 (q=11).
-
a[n_] := a[n] = Sum[10^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
m = 10; ContinuedFractionK[If[i == 1, 1, -10^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015095(n)
A(10, n)
end # Seiichi Manyama, Dec 24 2016
A015096
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=11.
Original entry on oeis.org
1, 1, 12, 1475, 1966284, 28792327202, 4637090716230072, 8214898341126993790759, 160085145151052208703206236460, 34315672899472590258644379240786601502
Offset: 0
G.f. = 1 + x + 12*x^2 + 1475*x^3 + 1966284*x^4 + 28792327202*x^5 + ...
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10), this sequence (q=11).
-
a[n_] := a[n] = Sum[11^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015096(n)
A(11, n)
end # Seiichi Manyama, Dec 24 2016
A015102
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-6.
Original entry on oeis.org
1, 1, -5, -191, 40915, 53110057, -412878084725, -19264066381851695, 5392667163887921078275, 9057620836725683164283293369, -91279931160615494871228103624209605
Offset: 0
G.f. = 1 + x - 5*x^2 - 191*x^3 + 40915*x^4 + 53110057*x^5 + ...
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7), this sequence (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
a[1] := 1; a[n_] := a[n] = Sum[(-6)^(i - 1)*a[i]*a[n - i], {i, 1, n - 1}]; Array[a, 12, 1] (* G. C. Greubel, Dec 24 2016 *)
m = 11; ContinuedFractionK[If[i == 1, 1, -(-6)^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015102(n)
A(-6, n)
end # Seiichi Manyama, Dec 24 2016
A015103
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-7.
Original entry on oeis.org
1, 1, -6, -307, 104742, 251699498, -4229811552588, -497641562809372379, 409828230340907182689774, 2362579011761419853955236859806, -95338580221916838164306067991935130836
Offset: 0
G.f. = 1 + x - 6*x^2 - 307*x^3 + 104742*x^4 + 251699498*x^5 + ...
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8), this sequence (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
m = 11; ContinuedFractionK[If[i == 1, 1, -(-7)^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015103(n)
A(-7, n)
end # Seiichi Manyama, Dec 25 2016
A015105
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-8.
Original entry on oeis.org
1, 1, -7, -463, 236201, 967959393, -31716161292711, -8314264834902720111, 17436260499054618815283977, 292531943497569504642889779448001, -39262972238604561849241166988994502971207, -42158295505666574904992534735221817668906507523855
Offset: 0
G.f. = 1 + x - 7*x^2 - 463*x^3 + 236201*x^4 + 967959393*x^5 + ...
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9), this sequence (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
m = 11; ContinuedFractionK[If[i == 1, 1, -(-8)^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015105(n)
A(-8, n)
end # Seiichi Manyama, Dec 25 2016
A015106
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-9.
Original entry on oeis.org
1, 1, -8, -665, 483544, 3173511682, -187386353065808, -99585165693268026701, 476312561203989614441440600, 20503694883570579788445502041773422, -7943551457092331370323478258038812629918704
Offset: 0
G.f. = 1 + x - 8*x^2 - 665*x^3 + 483544*x^4 + 3173511682*x^5 + ...
Cf.
A015108 (q=-11),
A015107 (q=-10), this sequence (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
m = 11; ContinuedFractionK[If[i == 1, 1, -(-9)^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015106(n)
A(-9, n)
end # Seiichi Manyama, Dec 25 2016
A015107
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-10.
Original entry on oeis.org
1, 1, -9, -919, 917271, 9174563561, -917438025443049, -917439860513400673559, 9174396770273536422744011031, 917439695376166450708460281823359721, -917439693541287252616828116888122637934368489
Offset: 0
G.f. = 1 + x - 9*x^2 - 919*x^3 + 917271*x^4 + 9174563561*x^5 + ...
Cf.
A015108 (q=-11), this sequence (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
m = 11; ContinuedFractionK[If[i == 1, 1, -(-10)^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015107(n)
A(-10, n)
end # Seiichi Manyama, Dec 25 2016
A015108
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-11.
Original entry on oeis.org
1, 1, -10, -1231, 1636130, 23957879562, -3858392581773300, -6835385537899011365535, 133202313157282627679850238250, 28553099061411464607955930776882965774
Offset: 0
G.f. = 1 + x - 10*x^2 - 1231*x^3 + 1636130*x^4 + 23957879562*x^5 + ...
Cf. this sequence (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2),
A015084 (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
m = 10; ContinuedFractionK[If[i == 1, 1, -(-11)^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015108(n)
A(-11, n)
end # Seiichi Manyama, Dec 25 2016