cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A015969 Numbers k that divide 16^k + 1.

Original entry on oeis.org

1, 17, 289, 4913, 83521, 1419857, 6029713, 12027313, 24137569, 85525793, 102505121, 204464321, 410338673, 1453938481, 1742587057, 3475893457, 6975757441, 24716954177, 29623979969, 59090188769, 111612202577, 118587876497, 420188221009, 500540685121, 503607659473
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Max Alekseyev, Oct 02 2010
Missing terms a(10), a(14), a(18), and a(23) from Giovanni Resta, Mar 23 2020

A327840 Numbers m that divide 4^m + 3.

Original entry on oeis.org

1, 7, 16387, 4509253, 24265177, 42673920001, 103949349763, 12939780075073
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 27 2019

Keywords

Comments

Number of solutions < 10^9 to k^n == k-1 (mod n): 1 (if k = 1), 188 (if k = 2, see A006521), 5 (if k = 3, see A015973), 5 (if k = 4, see this sequence), 5 (if k = 5), 10 (if k = 6), 10 (if k = 7), 7 (if k = 8), 5 (if k = 9), 8 (if k = 10), 11 (if k = 11), 8 (if k = 12), 9 (if k = 13), 4 (if k = 14), 3 (if k = 15), 6 (if k = 16), 7 (if k = 17), 7 (if k = 18), ...
a(9) > 10^15. - Max Alekseyev, Nov 10 2022

Crossrefs

Solutions to k^n == 1-k (mod n): A006521 (k = 2), A015973 (k = 3), this sequence (k = 4), A123047 (k = 5), A327943 (k = 6).
Solutions to 4^n == k (mod n): A000079 (k = 0), A015950 (k = -1), A014945 (k = 1), A130421 (k = 2), this sequence (k = -3), A130422 (k = 3).

Programs

  • Magma
    [1] cat [n: n in [1..10^8] | Modexp(4,n,n) + 3 eq n];
    
  • Mathematica
    Select[Range[10^7], IntegerQ[(PowerMod[4, #, # ]+3)/# ]&] (* Metin Sariyar, Sep 28 2019 *)
  • PARI
    is(n)=Mod(4,n)^n==-3 \\ Charles R Greathouse IV, Sep 29 2019

Extensions

a(6)-a(7) from Giovanni Resta, Sep 29 2019
a(8) from Max Alekseyev, Nov 10 2022

A211349 Primes p such that p-1 divides 2^p + 2.

Original entry on oeis.org

2, 3, 11, 251, 5051, 16811, 2025251, 8751251, 16607051, 28257611, 69005051, 78906251, 176775251, 210381251, 372175451, 550427051, 707025251, 854704451, 1866788051, 2441406251, 2605806251, 4249701251, 5469531251, 9304386251, 10315761251, 10915095251
Offset: 1

Views

Author

Philip A. Hoskins, Feb 06 2013

Keywords

Comments

Prime p>2 is in this sequence iff (p-1)/2 is in A015950. - Max Alekseyev, Dec 26 2017

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], Mod[2^# + 2, # - 1] == 0 &]
  • PARI
    N=10^9;
    default(primelimit,N);
    forprime(p=2,N, if (-2==Mod(2,p-1)^p, print1(p,", ")));
    /* Joerg Arndt, Feb 06 2013 */
    
  • Python
    from sympy import primerange
    A211349_list = [p for p in primerange(1,10**6) if p == 2 or pow(2,p,p-1) == p-3] # Chai Wah Wu, Mar 25 2021

Extensions

a(19)-a(47) from Giovanni Resta, Feb 10 2013
a(48)-a(177) from Max Alekseyev, Jan 06 2018

A015945 Positive integers n such that n | (2^n + n/2 + 1).

Original entry on oeis.org

2, 10, 50, 250, 410, 1250, 2050, 5050, 6250, 10250, 16810, 25250, 31250, 51250, 84050, 126250, 156250, 207050, 256250, 336610, 405050, 420250, 510050, 631250, 689210, 781250, 1035250, 1281250, 1683050, 1750250, 2025250, 2101250, 2550250, 3156250, 3446050
Offset: 1

Views

Author

Keywords

Programs

  • Python
    A015945_list = [n for n in range(2,10**6,2) if pow(2,n,n) == n//2-1] # Chai Wah Wu, Mar 25 2021

Formula

a(n) = 2 * A015950(n). - Max Alekseyev, Aug 04 2011

A292330 Numbers k such that k^2 divides 4^k + 1.

Original entry on oeis.org

1, 5, 205, 168305, 2084645, 37217545, 1711493545, 2483072545, 2763736405, 8866165745, 30555604445, 55328770405, 169592124685, 378465215105, 423977184745, 2038602559445, 3815777985545, 7279122076645, 25250364710105, 28104435502445, 45424920502505, 55625535217765, 90160039460905
Offset: 1

Views

Author

Max Alekseyev, Sep 14 2017

Keywords

Crossrefs

Cf. A052539. Subsequence of A015950.

A319222 Numbers k such that k divides 2^(2k+1) + 1.

Original entry on oeis.org

1, 3, 129, 2537, 51889, 101617, 226873, 270427, 653467, 945667, 1740979, 5819937, 6520987, 9828587, 15452867, 24950857, 51377539, 89519449, 108627601, 135776371, 160126609, 296338873, 310026163, 400431289, 641706243, 643359937, 678257563, 803419697, 902661523, 952431331, 1004273987, 1243893697, 1796055907
Offset: 1

Views

Author

Altug Alkan, Sep 13 2018

Keywords

Comments

Also, numbers k such that 4^k == -1/2 (mod k) (cf. A296369). - Max Alekseyev, Sep 15 2018
If k is in the sequence, and m is another divisor of 2^(2*k+1)+1 and is coprime to k, then m*k is in the sequence. - Robert Israel, Sep 14 2018

Crossrefs

Programs

  • Maple
    filter:= n -> 2 &^ (2*n+1)+1 mod n = 0:
    select(filter, [$1..10^7]); # Robert Israel, Sep 14 2018
  • PARI
    is_A319222(n) = Mod(2, n)^(2*n+1)==-1;

A015974 Numbers k that divide 4^k + 1, k not a power of 5.

Original entry on oeis.org

205, 1025, 2525, 5125, 8405, 12625, 25625, 42025, 63125, 103525, 128125, 168305, 202525, 210125, 255025, 315625, 344605, 517625, 640625, 841525, 875125, 1012625, 1050625, 1275125, 1578125, 1723025, 2042725, 2084645
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A015950.
Previous Showing 11-17 of 17 results.