cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A103598 Smallest prime p such that Sum_{primes q <= p} 1/q >= n/5.

Original entry on oeis.org

2, 2, 3, 3, 5, 11, 17, 41, 97, 277, 1013, 4789, 31627, 314723, 5195977, 159490147, 10443979657
Offset: 1

Views

Author

James R. Buddenhagen, Mar 28 2005

Keywords

Comments

a(18) > pi(5*10^10). - Robert Price, Dec 10 2013

Crossrefs

Programs

  • Mathematica
    For[n = 1, n ≤ 17, n++, sum = 0; For[k = 1, k ≤ 10^6, k++, sum = sum + 1/Prime[k]; If[sum >= n/5, Print[Prime[k]]; Break[]]]]
    Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/5, m++];
    Prime[m], {n, 1, 17}] (* Robert Price, Mar 27 2019 *)

Extensions

a(1)-a(2) and a(16)-a(17) from Robert Price, Dec 10 2013

A120055 a(n) is the least semiprime s such that the Sum_{semiprime i <= s} 1/i exceeds n.

Original entry on oeis.org

4, 35, 871, 43217, 5296623, 2011783478
Offset: 0

Views

Author

Keywords

Comments

A002387(n+1) < a(n) < A016088(n).
a(n) is the k-th semiprime: k = 1, 13, 262, 10521, 1034924, 316108902; factors: 2*2, 5*7, 13*61, 23*1879, 3*1765541, 2*1005891739.
For a(1), sum = 1.025694370988488635...
for a(2), sum = 2.000920208207319042...
for a(3), sum = 3.000000294546501318...
for a(4), sum = 4.000000031685702432...
for a(5), sum = 5.000000000169814007...

Examples

			a(0)=4 because 1/4 > 0.
a(1)=35 because 1/4 + 1/6 + 1/9 + 1/10 + 1/14 + 1/15 + 1/21 + 1/22 + 1/25 + 1/26 + 1/33 + 1/34 + 1/35 = 15708817/15315300 > 1.
		

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[s <= n, If[ Plus @@ Last /@ FactorInteger@k == 2, s = N[ s + 1/k, 20]]; k++ ]; Print[{k - 1, s}]; k ++, {n, 0, 5}]

A136095 a(n) is the largest k such that Sum_{i=1..k} 1/prime(i) <= n.

Original entry on oeis.org

2, 58, 361138, 43922730588128389
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2007

Keywords

Crossrefs

Formula

a(n) = A046024(n) - 1.

A331930 a(n) is the smallest composite k such that Sum_{composites j = 4, ..., k} 1/j exceeds n/2.

Original entry on oeis.org

8, 16, 33, 63, 118, 216, 395, 715, 1281, 2279, 4036, 7102, 12441, 21722, 37797, 65558, 113422, 195759, 337148, 579465, 994194, 1703072, 2912869, 4975222, 8486672, 14459492, 24608418, 41837580, 71060409, 120585504, 204452804, 346372172, 586359050, 991915208
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 01 2020

Keywords

Comments

Lim_{n->infinity} a(n+1)/a(n) = sqrt(e).

Examples

			a(1) = 1 because 1/4 + 1/6 = 0.41666... < 1/2 but 1/4 + 1/6 + 1/8 = 0.54166... > 1/2.
		

Crossrefs

Cf. A016088 (sum of reciprocals of primes exceeds n), A076751 (sum of reciprocals of composites exceeds n), A103592 (sum of reciprocals of primes exceeds n/2).
Cf. A019774 (sqrt(e)).

Formula

a(2n) = A076751(n).
Previous Showing 21-24 of 24 results.