cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A016830 a(n) = (4*n+2)^6.

Original entry on oeis.org

64, 46656, 1000000, 7529536, 34012224, 113379904, 308915776, 729000000, 1544804416, 3010936384, 5489031744, 9474296896, 15625000000, 24794911296, 38068692544, 56800235584, 82653950016, 117649000000, 164206490176, 225199600704, 304006671424, 404567235136, 531441000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (4*Range[0,20]+2)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{64,46656,1000000,7529536,34012224,113379904,308915776},20] (* Harvey P. Dale, Oct 14 2012 *)

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Oct 14 2012
From Amiram Eldar, Jul 07 2022: (Start)
a(n) = A016825(n)^6 = A016826(n)^3 = A016827(n)^2 = 64*A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/61440. (End)

A199833 Number of -n..n arrays of 4 elements with zero sum and no two neighbors summing to zero.

Original entry on oeis.org

4, 40, 140, 336, 660, 1144, 1820, 2720, 3876, 5320, 7084, 9200, 11700, 14616, 17980, 21824, 26180, 31080, 36556, 42640, 49364, 56760, 64860, 73696, 83300, 93704, 104940, 117040, 130036, 143960, 158844, 174720, 191620, 209576, 228620, 248784
Offset: 1

Views

Author

R. H. Hardin, Nov 11 2011

Keywords

Examples

			Some solutions for n=3:
   0  -3  -3   0   0   0  -1   1   1  -1   0   0  -3  -2  -1  -2
  -2   2  -1   3   1   1   0   1  -2   2  -2   1   2   1  -3   0
   3   3   2   0   2   1  -1  -3   1   0   0   0  -1  -2   1   1
  -1  -2   2  -3  -3  -2   2   1   0  -1   2  -1   2   3   3   1
		

Crossrefs

Row 2 of A199832.

Formula

Empirical: a(n) = (16/3)*n^3 - (4/3)*n = 4*A000447(n).
Empirical: G.f.: 4*x*(1+6*x+x^2) / (x-1)^4 . - R. J. Mathar, Aug 01 2014
Empirical: partial sums of A016826. - Sean A. Irvine, Jul 13 2022
Previous Showing 11-12 of 12 results.