cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A346735 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 * A(x)^3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 6, 10, 15, 21, 34, 63, 120, 220, 381, 642, 1102, 1968, 3615, 6658, 12090, 21675, 38820, 70200, 128466, 236583, 435453, 798798, 1462933, 2684352, 4945740, 9145839, 16942356, 31388571, 58140726, 107753364, 199993359, 371852269, 692375844, 1290252474
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 30 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 + x^5 A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = If[n < 5, 1, Sum[Sum[a[i] a[j] a[n - i - j - 5], {j, 0, n - i - 5}], {i, 0, n - 5}]]; Table[a[n], {n, 0, 40}]

Formula

a(0) = ... = a(4) = 1; a(n) = Sum_{i=0..n-5} Sum_{j=0..n-i-5} a(i) * a(j) * a(n-i-j-5).

A366590 G.f. A(x) satisfies A(x) = 1 + x^2*(1+x)^2*A(x)^3.

Original entry on oeis.org

1, 0, 1, 2, 4, 12, 30, 84, 238, 680, 1993, 5882, 17575, 52976, 160870, 491924, 1512940, 4677672, 14529744, 45320640, 141897039, 445792908, 1404899598, 4440113940, 14069493813, 44689897200, 142268117566, 453839997836, 1450547245960, 4644492976232, 14896047099592
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k, n-2*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*k,n-2*k) * binomial(3*k,k)/(2*k+1).

A378321 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3*n-3*r+k,r) * binomial(r,n-r)/(3*n-3*r+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 3, 0, 1, 4, 6, 8, 6, 0, 1, 5, 10, 16, 19, 16, 0, 1, 6, 15, 28, 42, 50, 42, 0, 1, 7, 21, 45, 79, 114, 137, 114, 0, 1, 8, 28, 68, 135, 224, 322, 380, 322, 0, 1, 9, 36, 98, 216, 401, 652, 918, 1088, 918, 0, 1, 10, 45, 136, 329, 672, 1205, 1912, 2673, 3152, 2673, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2024

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,   1,    1,    1, ...
  0,  1,   2,   3,   4,    5,    6, ...
  0,  1,   3,   6,  10,   15,   21, ...
  0,  3,   8,  16,  28,   45,   68, ...
  0,  6,  19,  42,  79,  135,  216, ...
  0, 16,  50, 114, 224,  401,  672, ...
  0, 42, 137, 322, 652, 1205, 2088, ...
		

Crossrefs

Columns k=0..1 give A000007, A019497.

Programs

  • PARI
    T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x^2 * A_k(x)^(3/k) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A019497.
B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x^2 * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-2,k+2) for n > 1.

A367260 G.f. satisfies A(x) = 1 + x*A(x)^3 * (1 + x*A(x))^3.

Original entry on oeis.org

1, 1, 6, 36, 251, 1881, 14817, 120950, 1014042, 8680377, 75552553, 666614637, 5948817600, 53599239101, 486926148000, 4455202562652, 41018936164660, 379747493741643, 3532914858433284, 33012260400580342, 309692626084981245, 2915659701275923491
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).

A378411 G.f. A(x) satisfies A(x) = ( 1 + x * (1 + x*A(x)^(3/2)) )^2.

Original entry on oeis.org

1, 2, 3, 8, 19, 50, 137, 380, 1088, 3152, 9270, 27576, 82794, 250700, 764454, 2345688, 7237318, 22438988, 69876356, 218456216, 685400835, 2157396738, 6810801959, 21559694364, 68417766207, 217617573110, 693655532081, 2215401956720, 7088605614314, 22720370822508
Offset: 0

Views

Author

Seiichi Manyama, Dec 08 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=0, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(3*(n-k)+2,k) * binomial(k,n-k)/(3*(n-k)+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A019497.
Previous Showing 11-15 of 15 results.