cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 340 results. Next

A103786 a(n) is the minimum k that makes primorial P(n)/A019565(k)+A019565(k) prime, k>=0, n>0.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 3, 5, 1, 0, 1, 6, 6, 1, 11, 1, 3, 3, 4, 2, 14, 5, 2, 9, 22, 5, 8, 1, 45, 23, 13, 10, 2, 13, 24, 42, 7, 20, 9, 8, 10, 114, 5, 31, 5, 33, 1, 6, 19, 22, 6, 7, 4, 20, 59, 65, 4, 29, 15, 3, 6, 1, 12, 32, 17, 26, 34, 8, 59, 115, 32, 33, 26, 0, 25, 1, 35, 71, 27, 65, 75, 71, 5
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

This is the k value of A103785. Conjecture: sequence is defined for all n>=1.

Examples

			for n=1, P(1)/A019565(0)+A019565(0)=2/1+1=3 is prime, so a(1)=0;
for n=7, P(7)/A019565(3)+A019565(3)=510510/6+6=85091 is prime, so a(7)=3;
		

Crossrefs

Programs

  • Mathematica
    nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tn = 0; tt = 1; cp = npd/tt + tt; While[(IntegerQ[cp]) && (! (PrimeQ[cp])), tn = tn + 1; tt = 1; k1 = tn; o = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; cp = npd/tt + tt]; Print[tn]; n = n + 1; npd = npd*Prime[n]]

A103796 Indices of n such that A019565(n)+1 is prime.

Original entry on oeis.org

0, 1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 31, 35, 37, 43, 45, 47, 51, 57, 59, 67, 73, 79, 83, 85, 97, 99, 107, 111, 119, 123, 133, 135, 145, 151, 153, 155, 159, 163, 167, 173, 175, 185, 193, 201, 203, 211, 213, 215, 233, 245, 251, 253, 257, 259, 263, 267, 271, 277
Offset: 0

Views

Author

Lei Zhou, Feb 22 2005

Keywords

Examples

			A019565(0)=1, 1+1=2 is prime, so a(1)=0;
A019565(1)=2, 2+1=3 is prime, so a(2)=1;
A019565(2)=3, 3+1=4 is not prime
A019565(3)=6, 6+1=7 is prime, so a(3)=3;
		

Crossrefs

Cf. A019565.

Programs

  • Mathematica
    A019565 = Function[tn, k1 = tn; o = 1; tt = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; tt]; Do[cp = A019565[n] + 1; If[PrimeQ[cp], Print[n]], {n, 0, 1000} ]

A285323 a(n) = A065642(A065642(A019565(n))) / A019565(n).

Original entry on oeis.org

1, 4, 9, 3, 25, 4, 5, 3, 49, 4, 7, 3, 7, 4, 5, 3, 121, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 169, 4, 9, 3, 13, 4, 5, 3, 13, 4, 7, 3, 7, 4, 5, 3, 13, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 289, 4, 9, 3, 17, 4, 5, 3, 17, 4, 7, 3, 7, 4, 5, 3, 17, 4, 9, 3, 11, 4, 5, 3, 11, 4, 7, 3, 7, 4, 5, 3, 17, 4, 9, 3, 13, 4, 5, 3, 13, 4, 7, 3, 7, 4, 5, 3
Offset: 0

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Comments

After the initial a(0)=1, the third row of array A285321 divided by its first row. After 1, all terms are either primes or squares of primes. See A285110.
The sequence is completely determined by the positions of two least significant 1-bits of n: After initial zero, if n is a power of two (only one 1-bit present) or if prime(1+A285099(n)) > prime(1+A007814(n))^2, a(n) = prime(1+A007814(n))^2 = A020639(A019565(n))^2, otherwise a(n) = prime(1+A285099(n)) = A014673(A019565(n)).

Crossrefs

Programs

Formula

a(n) = A065642(A065642(A019565(n))) / A019565(n).

A294931 Multiplicative with a(p^e) = A019565(A289813(e)).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 6, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 3, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 12, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 12, 6, 4, 2, 4, 4, 4, 4, 6, 2, 4, 4, 2, 4, 4, 4, 6, 2, 2, 2, 1, 2, 8, 2, 6, 8, 4, 2, 3, 2, 8, 4, 12, 2, 8, 4, 2, 2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Programs

A303778 Divisor-or-multiple permutation of squarefree numbers: a(n) = A019565(A303775(n)).

Original entry on oeis.org

1, 2, 6, 3, 15, 5, 10, 30, 210, 105, 35, 7, 70, 14, 42, 21, 1155, 11, 22, 66, 33, 330, 55, 110, 2310, 165, 2145, 429, 143, 13, 858, 286, 26, 4290, 1430, 715, 65, 5005, 385, 77, 770, 154, 462, 231, 30030, 10010, 2002, 1001, 91, 15015, 3003, 39, 6006, 78, 390, 195, 1365, 455, 910, 130, 2730, 182, 546, 273, 4641, 17, 1870, 935, 187, 2805, 561, 51, 5610, 374, 34
Offset: 0

Views

Author

Antti Karttunen, May 06 2018

Keywords

Comments

Each a(n+1) is either a divisor or a multiple of a(n).

Crossrefs

Cf. also A304087.

Programs

Formula

a(n) = A019565(A303775(n)).

A320017 a(1) = 1; for n > 1, a(n) = Product_{d|n} A019565(d)^[moebius(d) = +1].

Original entry on oeis.org

1, 2, 2, 2, 2, 30, 2, 2, 2, 42, 2, 30, 2, 210, 420, 2, 2, 30, 2, 42, 220, 330, 2, 30, 2, 462, 2, 210, 2, 132300, 2, 2, 52, 78, 156, 30, 2, 390, 780, 42, 2, 346500, 2, 330, 420, 2730, 2, 30, 2, 42, 1716, 462, 2, 30, 8580, 210, 4004, 6006, 2, 132300, 2, 30030, 220, 2, 68, 128700, 2, 78, 340, 343980, 2, 30, 2, 714, 420, 390, 2380, 2702700, 2, 42, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2018

Keywords

Crossrefs

Cf. A019565, A320018 (rgs-transform).
Cf. also A300831, A300832.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A320017(n) = if(1==n,n,my(m=1); fordiv(n,d,if(1==moebius(d), m *= A019565(d))); (m));

Formula

a(1) = 1; for n > 1, a(n) = Product_{d|n} A019565(d)^[A008683(d) > 0].
For n >= 2, A048675(a(n)) = A318674(n).

A339820 a(n) = phi(A019565(n)), where phi is Euler totient function.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 6, 6, 12, 12, 24, 24, 48, 48, 10, 10, 20, 20, 40, 40, 80, 80, 60, 60, 120, 120, 240, 240, 480, 480, 12, 12, 24, 24, 48, 48, 96, 96, 72, 72, 144, 144, 288, 288, 576, 576, 120, 120, 240, 240, 480, 480, 960, 960, 720, 720, 1440, 1440, 2880, 2880, 5760, 5760, 16, 16, 32, 32, 64, 64, 128, 128
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Crossrefs

Cf. A000010, A019565, A339821 (bisection).
Cf. also A324650, A339809.

Programs

  • PARI
    A339820(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= (p-1)); n >>= 1); (m); };

Formula

If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A006093(e1) * A006093(e2) * ... * A006093(ek).
a(n) = A000010(A019565(n)).

A339970 a(n) = A329697(A019565(2n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6, 2, 3, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 7, 8, 1, 2, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 6, 7, 3, 4, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 8, 9, 5, 6, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 10, 11, 4, 5, 5, 6, 6, 7, 7, 8, 6, 7
Offset: 0

Views

Author

Antti Karttunen, Dec 27 2020

Keywords

Crossrefs

Differs from A106486 for the first time at n=32, where a(32) = 1, while A106486(32) = 2.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A339970(n) = A329697(A019565(2*n));
    
  • PARI
    A339970(n) = { my(s=0, p=2); while(n>0, p = nextprime(1+p); if(n%2, s += A329697(p)); n >>= 1); (s); };

Formula

a(n) = A329697(A019565(2*n)) = A329697(A003961(A019565(n))).
a(n) = A329697(A339971(n)) + A000120(n).
If 4n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A329697(A000040(e1)) + A329697(A000040(e2)) + ... + A329697(A000040(ek)).

A342921 a(n) = A003415(A019565(n)).

Original entry on oeis.org

0, 1, 1, 5, 1, 7, 8, 31, 1, 9, 10, 41, 12, 59, 71, 247, 1, 13, 14, 61, 16, 87, 103, 371, 18, 113, 131, 493, 167, 719, 886, 2927, 1, 15, 16, 71, 18, 101, 119, 433, 20, 131, 151, 575, 191, 837, 1028, 3421, 24, 191, 215, 859, 263, 1241, 1504, 5153, 311, 1623, 1934, 6871, 2556, 10117, 12673, 40361, 1, 19, 20, 91, 22, 129
Offset: 0

Views

Author

Antti Karttunen, Apr 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[#, 2], 1]] &, 70, 0] (* Michael De Vlieger, Apr 08 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A342921(n) = A003415(A019565(n));

Formula

a(n) = A003415(A019565(n)) = A069359(A019565(n)).
a(n) = A327860(A276156(n)) = A329029(A276156(n)) = A342002(A276156(n)).

A351081 a(n) = Product_{d|n} A019565(A289813(d)); a product obtained from the 1-digits present in ternary expansions of the divisors of n.

Original entry on oeis.org

2, 2, 6, 12, 6, 6, 4, 12, 30, 60, 10, 540, 60, 60, 90, 120, 10, 30, 4, 360, 36, 60, 6, 540, 12, 60, 210, 5040, 14, 18900, 84, 2520, 210, 140, 84, 94500, 140, 140, 18900, 75600, 210, 18900, 140, 12600, 3150, 84, 14, 113400, 168, 2520, 210, 5040, 14, 210, 60, 5040, 36, 84, 6, 1701000, 4, 84, 900, 25200, 900, 18900
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2022

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A289813(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); };
    A351081(n) = { my(m=1); fordiv(n,d,m *= A019565(A289813(d))); (m); };

Formula

a(n) = A019565(A289813(n)) * A293221(n).
Previous Showing 71-80 of 340 results. Next