A274014 Decimal expansion of the arc length of an ellipse with semi-major axis 1 and eccentricity sin(Pi/12), an arc length which evaluates without using elliptic integrals (a computation due to Ramanujan).
6, 1, 7, 6, 6, 0, 1, 9, 8, 7, 6, 5, 8, 6, 9, 3, 4, 6, 4, 7, 4, 5, 6, 8, 4, 0, 8, 4, 1, 0, 7, 3, 7, 4, 4, 1, 7, 5, 7, 5, 3, 7, 2, 3, 4, 3, 4, 6, 9, 6, 1, 2, 5, 1, 0, 2, 9, 1, 1, 4, 4, 1, 9, 2, 2, 5, 4, 1, 1, 3, 1, 0, 3, 2, 7, 8, 6, 3, 0, 1, 9, 0, 0, 3, 0, 5, 9, 1, 8, 7, 3, 8, 6, 0, 1, 5, 4, 3, 2, 9, 3, 4, 3
Offset: 1
Examples
6.176601987658693464745684084107374417575372343469612510291144192254...
References
- Richard E. Crandall, Projects in Scientific Computation, Springer, 1994; see p. 48.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A019824.
Programs
-
Mathematica
p = Sqrt[Pi/Sqrt[3]]*((1 + 1/Sqrt[3])*Gamma[1/3]/Gamma[5/6] + 2*Gamma[5/6]/ Gamma[1/3]); RealDigits[p, 10, 103][[1]]
-
PARI
sqrt(Pi/sqrt(3))*((1 + 1/sqrt(3))*gamma(1/3)/gamma(5/6) + 2*gamma(5/6)/gamma(1/3)) \\ _G. C. Greubel, Jun 05 2017
Formula
Equals (2*((6 + sqrt(3) + 4*sqrt(2 + sqrt(3)))*E((-2 + sqrt(2 + sqrt(3)))^2/(2 + sqrt(2 + sqrt(3)))^2) - 4*sqrt(2 + sqrt(3))*K((-2 + sqrt(2 + sqrt(3)))^2/ (2 + sqrt(2 + sqrt(3)))^2)))/(2 + sqrt(2 + sqrt(3))), where K and E are the elliptic integrals of first and second kind.
Equals sqrt(Pi/sqrt(3))*(((1 + 1/sqrt(3))*Gamma(1/3))/Gamma(5/6) + (2*Gamma(5/6))/Gamma(1/3)).
Comments