cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025

A377752 Decimal expansion of the circumradius of a truncated icosahedron with unit edge length.

Original entry on oeis.org

2, 4, 7, 8, 0, 1, 8, 6, 5, 9, 0, 6, 7, 6, 1, 5, 5, 3, 7, 5, 6, 6, 4, 0, 7, 9, 1, 2, 2, 6, 6, 3, 0, 7, 8, 0, 6, 9, 3, 6, 4, 9, 4, 7, 3, 2, 9, 7, 5, 7, 9, 4, 3, 8, 5, 5, 4, 2, 9, 5, 8, 3, 8, 8, 5, 3, 1, 5, 9, 5, 7, 7, 1, 2, 0, 7, 4, 2, 1, 6, 7, 6, 1, 8, 4, 2, 6, 2, 2, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 07 2024

Keywords

Examples

			2.47801865906761553756640791226630780693649473...
		

Crossrefs

Cf. A377750 (surface area), A377751 (volume), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A019881 (analogous for a regular icosahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[58 + 18*Sqrt[5]]/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosahedron", "Circumradius"], 10, 100]]
  • PARI
    sqrt(58 + 18*sqrt(5))/4 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals sqrt(58 + 18*sqrt(5))/4 = sqrt(58 + 18*A002163)/4.
Previous Showing 31-32 of 32 results.