cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A020236 Strong pseudoprimes to base 10.

Original entry on oeis.org

9, 91, 1729, 4187, 6533, 8149, 8401, 10001, 11111, 19201, 21931, 50851, 79003, 83119, 94139, 100001, 102173, 118301, 118957, 134863, 139231, 148417, 158497, 166499, 188191, 196651, 201917, 216001, 226273, 231337, 237169, 251251, 287809, 302177
Offset: 1

Views

Author

Keywords

Examples

			From _Alonso del Arte_, Aug 10 2018: (Start)
9 is a strong pseudoprime to base 10. It's not enough to check that 10^8 = 1 mod 9. Since 8 = 1 * 2^3, we also need to verify that 10 = 1 mod 9 and 10^2 = 1 mod 9 as well. Since these are both equal to 1, we see that 9 is indeed a strong pseudoprime to base 10.
91 is also a strong pseudoprime to base 10. Besides checking that 10^90 = 1 mod 91, since 90 = 45 * 2, we also check that 10^45 = -1 mod 91; the -1 is enough to satisfy the definition of a strong pseudoprime.
99 is a Fermat pseudoprime to base 10 (see A005939) but it is not a strong pseudoprime to base 10. Although 10^98 = 1 mod 99, since 98 = 49 * 2, we have to check 10^49 mod 99, and there we find not -1 nor 1 but 10. Therefore 99 is not in this sequence. (End)
		

Crossrefs

Programs

  • Mathematica
    strongPseudoprimeQ[b_, n_] := Module[{rems = Table[PowerMod[b, (n - 1)/2^expo, n], {expo, 0, IntegerExponent[n - 1,2]}]}, (rems[[-1]] == 1 || MemberQ[rems, n - 1]) && PowerMod[b, n - 1, n] == 1]; max = 5000; Select[Complement[Range[2, max], Prime[Range[PrimePi[max]]]], strongPseudoprimeQ[10, #] &] (* Alonso del Arte, Aug 10 2018 *)

A215568 Strong pseudoprimes to base 2 and 5.

Original entry on oeis.org

1907851, 4181921, 4469471, 5256091, 9006401, 9863461, 14709241, 25326001, 40987201, 55729957, 58449847, 67194401, 94502701, 100618933, 109437751, 114305441, 133800661, 135969401, 147028001, 153928133, 161304001, 192857761, 196049701, 213035761, 226359547, 245950561
Offset: 1

Views

Author

M. F. Hasler, Aug 16 2012

Keywords

Crossrefs

Intersection of A001262 and A020231.

A141390 Overpseudoprimes to base 5.

Original entry on oeis.org

781, 1541, 5461, 13021, 15751, 25351, 29539, 38081, 40501, 79381, 100651, 121463, 133141, 195313, 216457, 315121, 318551, 319507, 326929, 341531, 353827, 375601, 416641, 432821, 453331, 464881, 498451, 555397, 556421, 753667, 764941, 863329, 872101, 886411
Offset: 1

Views

Author

Vladimir Shevelev, Jun 29 2008

Keywords

Comments

If h_5(n) is the multiplicative order of 5 modulo n, r_5(n) is the number of cyclotomic cosets of 5 modulo n then, by the definition, n is an overpseudoprime of base 5 if h_5(n)*r_5(n)+1=n. These numbers are in A020231. In particular, if n is squarefree such that its prime factorization is n=p_1*...*p_k, then n is overpseudoprime to base 5 iff h_5(p_1)=...=h_5(p_k). E.g., since h_5(101)=h_5(251)=h_5(401)=25, the number 101*251*401=10165751 is in the sequence.

Crossrefs

Programs

  • Mathematica
    ops5Q[n_] := CompositeQ[n] && GCD[n, 5] == 1 && MultiplicativeOrder[5, n]*(DivisorSum[n, EulerPhi[#]/MultiplicativeOrder[5, #] &] - 1) + 1 == n; Select[Range[6, 10^6], ops5Q] (* Amiram Eldar, Jun 24 2019 *)
  • PARI
    isok(n) = (n>5) && !isprime(n) && (gcd(n,5)==1) && (znorder(Mod(5,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(5, d))) - 1) + 1 == n); \\ Michel Marcus, Oct 25 2018

Extensions

Inserted a(2) and a(8) and extended at the suggestion of Gilberto Garcia-Pulgarin by Vladimir Shevelev, Feb 06 2012

A215566 Strong pseudoprimes to bases 3 and 5.

Original entry on oeis.org

112141, 432821, 1024651, 1563151, 1627921, 3543121, 4291801, 5481451, 8595361, 9780409, 10679131, 11407441, 18790021, 21397381, 22369621, 25326001, 27012001, 32817151, 33796531, 35798491, 42149971, 48064021, 67680491, 99809051, 116151661, 118846151, 129762001
Offset: 1

Views

Author

M. F. Hasler, Aug 16 2012

Keywords

Comments

Terms A215566[1,...,35] calculated from A020231[1,...,715] and double-checked (up to a(32)=178482151) using A020229[1,...,752].

Crossrefs

Intersection of A020229 and A020231.

A020238 Strong pseudoprimes to base 12.

Original entry on oeis.org

91, 133, 145, 247, 1649, 1729, 2821, 8911, 9073, 10585, 13051, 13333, 16471, 19517, 20737, 21361, 24013, 24727, 26467, 29539, 31483, 31621, 34219, 34861, 35881, 38311, 38503, 40321, 53083, 67861, 79381, 79501, 88831, 97351, 115231, 121301, 131977
Offset: 1

Views

Author

Keywords

Crossrefs

A112450 Strong pseudoprimes (base-2) equal to product of 3 primes not necessarily distinct.

Original entry on oeis.org

15841, 29341, 52633, 74665, 252601, 314821, 476971, 635401, 1004653, 1023121, 1907851, 1909001, 2419385, 2953711, 3581761, 4335241, 4682833, 5049001, 5444489, 5599765, 5681809, 9069229, 13421773, 15247621, 15510041, 15603391, 17509501, 26254801, 26758057, 27966709
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 12 2005

Keywords

Comments

The term a(11)=1907851 is also a strong pseudoprime to base 5, cf. A020231. M. F. Hasler, Aug 16 2012

Examples

			a(1) = 15841 = 7*31*73.
		

Crossrefs

Intersection of A014612 and A001262.

Extensions

More terms from Amiram Eldar, Nov 10 2019

A329759 Odd composite numbers k for which the number of witnesses for strong pseudoprimality of k equals phi(k)/4, where phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 91, 703, 1891, 8911, 12403, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311, 3270403, 3913003, 4255903, 4686391, 5292631, 5481451, 6186403, 6969511
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2019

Keywords

Comments

Odd numbers k such that A071294((k-1)/2) = A000010(k)/4.
For each odd composite number m > 9 the number of witnesses <= phi(m)/4. For numbers in this sequence the ratio reaches the maximal possible value 1/4.
The semiprime terms of this sequence are of the form (2*m+1)*(4*m+1) where 2*m+1 and 4*m+1 are primes and m is odd.

Examples

			15 is in the sequence since out of the phi(15) = 8 numbers 1 <= b < 15 that are coprime to 15, i.e., b = 1, 2, 4, 7, 8, 11, 13, and 14, 8/4 = 2 are witnesses for the strong pseudoprimality of 15: 1 and 14.
		

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, 2005, Theorem 3.5.4., p. 136.

Crossrefs

Programs

  • Mathematica
    o[n_] := (n - 1)/2^IntegerExponent[n - 1, 2];
    a[n_?PrimeQ] := n - 1; a[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2] & /@ (p - 1)]) - 1)/(2^om - 1))];
    aQ[n_] := CompositeQ[n] && a[n] == EulerPhi[n]/4; s = Select[Range[3, 10^5, 2], aQ]

A140509 Numbers k such that 5^k-1 contains a divisor which is an overpseudoprime to base 5.

Original entry on oeis.org

5, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Vladimir Shevelev, Jun 30 2008

Keywords

Comments

An odd prime p is in the sequence iff p is not in A004061.

Crossrefs

Programs

  • PARI
    isokd(n) = (n>5) && !isprime(n) && (gcd(n,5)==1) && (znorder(Mod(5,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(5, d))) - 1) + 1 == n); \\ A141390
    isok(n) = {fordiv (5^n-1, dd, if (isokd(dd), return (1));); return (0);} \\ Michel Marcus, Oct 25 2018

Extensions

Corrected and more terms from Michel Marcus, Oct 25 2018

A298757 Numbers k with record value of the least strong pseudoprime to base k (A298756).

Original entry on oeis.org

2, 1320, 4712, 5628, 7252, 7852, 14787, 17340, 61380, 78750, 254923, 486605, 1804842, 4095086, 12772344, 42162995
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2018

Keywords

Comments

The record strong pseudoprimes are 2047, 4097, 4711, 5627, 7251, 7851, 9409, 10261, 11359, 13747, 18299, 25761, 32761, 38323, 40501, 97921, ...

Crossrefs

Programs

  • Mathematica
    sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := Module[{ans=False},s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[ PowerMod[b, d, n] == 1, ans=True, Do[If[PowerMod[b, d*2^r, n] == n-1, ans=True], {r, 0, s-1}]];ans]; smallestSPP[b_] := Module[ {k=3}, While[ !sppQ[k,b],k+=2];k ]; sm=0;a={};Do[s=smallestSPP[b];If[s>sm,sm=s;AppendTo[a,b]], {b,2,10^4}];a (* after Jean-François Alcover at A020229 *)
  • PARI
    lista(nn) = {my(m=0); for (n=2, nn, my(r=a298756(n)); if (r>m, m =r; print1(n, ", ")););} \\ Michel Marcus, Jan 31 2022; using pari code in A298756

Extensions

a(9)-a(16) from Jonathan Pappas, Jan 31 2022
Previous Showing 11-19 of 19 results.