cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A306507 a(n) = gcd(n!^2+1, sigma(n!)), where sigma() denotes the sum of the divisors.

Original entry on oeis.org

1, 1, 1, 1, 1, 13, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 61, 1, 1, 1, 1, 1, 1, 1, 1, 61, 1, 1, 1, 193, 1, 1, 1, 757, 61, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 109, 1, 1, 1, 181, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 113
Offset: 1

Views

Author

Daoudi Rédoane, Feb 20 2019

Keywords

Comments

A sequence that produces primes.
A counterexample is found at n=7880, here the gcd is 380927609 = 15761*24169.
Interesting properties may be found in this sequence, for example many primes are 2n+1.

Crossrefs

Programs

  • Mathematica
    Table[GCD[(n!)^2+1,DivisorSigma[1,n!]],{n,90}] (* Harvey P. Dale, Jun 03 2021 *)
  • PARI
    a(n) = gcd(n!^2+1, sigma(n!)); \\ Michel Marcus, Feb 20 2019

Formula

a(n) = gcd(A020549(n), A062569(n)).

Extensions

More terms from Michel Marcus, Feb 20 2019
Previous Showing 11-11 of 11 results.