A383871 Number of labeled 3-nilpotent semigroups of order n.
0, 0, 6, 180, 11720, 3089250, 5944080072, 147348275209800, 38430603831264883632, 90116197775746464859791750, 2118031078806486819496589635743440, 966490887282837500134221233339527160717340, 17165261053166610940029331024343115375665769316911576, 6444206974822296283920298148689544172139277283018112679406098010
Offset: 1
Keywords
References
- H. Jürgensen, F. Migliorini, and J. Szép, Semigroups. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest, 1991.
Links
- Andreas Distler and James D. Mitchell, The number of nilpotent semigroups of degree 3, arXiv:1201.3529 [math.CO], 2012.
- Igor Dolinka, D. G. FitzGerald, and James D. Mitchell, Semirigidity and the enumeration of nilpotent semigroups of index three, arXiv:2411.00466 [math.CO], 2024.
- Pierre A. Grillet, Counting Semigroups, Communications in Algebra, 43(2), 574-596, (2014).
- D. J. Kleitman, B. R. Rothschild, and J. H. Spencer, The number of semigroups of order n, Proc. Amer. Math. Soc. 55 (1976), 227-232.
- Index entries for sequences related to semigroups
Formula
a(n) = Sum_{2 <= m <= b(n)} binomial(n,m) * m * Sum_{0 <= i <= m-1} (-1)^i * binomial(m-1,i) * (m-i)^((n-m)^2), where b(n) = floor(n + 1/2 - sqrt(n-3/4)).
Comments