cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A179385 The n-th term is the sum of all the 1's generated from all the combinations of prime numbers and ones possible, that add to n, when each prime is only allowed once and any number of ones are allowed.

Original entry on oeis.org

1, 2, 4, 7, 10, 15, 20, 27, 35, 44, 55, 67, 81, 97, 115, 135, 158, 183, 212, 244, 280, 320, 364, 413, 467, 526, 591, 661, 737, 820, 909, 1007, 1112, 1226, 1349, 1481, 1624, 1778, 1943, 2121, 2311, 2515, 2734, 2968, 3219, 3486, 3771, 4075, 4399, 4744, 5112, 5502
Offset: 1

Views

Author

Joseph Foley, Jul 12 2010

Keywords

Examples

			n=7 gives 11111 11, 2111 11, 311 11, 5 11, 5 2, 32 11. (Grouped in 5's) no. of 1's: 7, 5, 4, 2, 0, 2. Sum is 20, therefore a(7) = 20.
n=12 gives 11111 11111 11, 11111 11111 2, 11111 311 11, 11111 32 11, 11111 5 11, 5 2111 11, 5 311 11, 5 32 11, 7111 11, 721 11, 73 11, 73 2, 75, eleven 1, no. of 1's: 12, 10, 9, 7, 7, 5, 4, 2, 5, 3, 2, 0, 0, 1. Sum is 67, therefore a(12) = 67.
1: 1 => 1 2: 11, 2 => 2 3: 111, 21 => 4 4: 1111, 211, 22, 31 => 7 5: 11111, 2111, 311, 23 => 10 6: 11111 1, 2111 1, 311 1, 23 1, 5 1 => 15 and so on.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; if n<=0 then 0 elif i=0 then n else b(n, i-1) +b(n-ithprime(i), i-1) fi end: # R. J. Mathar, Jul 14 2010
    a:= n-> b(n, numtheory[pi](n)): seq(a(n), n=1..80); # Alois P. Heinz
  • Mathematica
    fQ[lst_List] := Sort@ Flatten@ Most@ Split@ lst == Rest@ Union@ lst; f[n_] := Sum[ Count[ Select[ IntegerPartitions[n, {k}, Join[{1}, Prime@ Range@ PrimePi@n]], fQ@# &], 1, 2], {k, n}]; Array[f, 50] (* improved by Robert G. Wilson v, Jul 20 2010 *)
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[Prime[i] > n, 0, b[n - Prime[i], i - 1]]]];
    a[n_] := Sum[k*b[n - k, PrimePi[n - k]], {k, 1, n}];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
  • PARI
    a(n) = my(r); r = x/(1-x)^2 + O(x^(n+1)); forprime(p=2,n,r*=1+x^p); polcoeff(r,n) \\ Max Alekseyev, Jul 14 2010

Formula

a(n) = Sum_{k=1..n} k * A000586(n-k). - Max Alekseyev, Jul 14 2010

Extensions

Corrected and extended by R. J. Mathar, Jul 14 2010

A141450 Upper right triangle of the number of m's in all partitions of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 1, 3, 7, 1, 1, 2, 4, 12, 1, 1, 2, 4, 8, 19, 1, 1, 2, 3, 6, 11, 30, 1, 1, 2, 3, 6, 9, 19, 45, 1, 1, 2, 3, 5, 8, 15, 26, 67, 1, 1, 2, 3, 5, 8, 13, 21, 41, 97, 1, 1, 2, 3, 5, 7, 12, 18, 31, 56, 139, 1, 1, 2, 3, 5, 7, 12, 17, 28, 45, 83, 195, 1, 1, 2, 3, 5, 7, 11, 16, 25, 38, 63
Offset: 1

Views

Author

Robert G. Wilson v, Aug 07 2008

Keywords

Comments

The "last" column read from the bottom is A000041.
Mirror of triangle A066633. - Omar E. Pol, May 01 2012

Examples

			A000070: 1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, ...,
A024786: 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 83, 112, 160, 213, ...,
A024787: 0, 0, 1, 1, 2, 4, 6, 9, 15, 21, 31, 45, 63, 87, 122, ...,
A024788: 0, 0, 0, 1, 1, 2, 3, 6, 8, 13, 18, 28, 38, 55, 74, ...,
A024789: 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 50, ...,
A024790: 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 16, 24, 33, ...,
A024791: 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 16, 23, ...,
A024792: 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, ...,
A024793: 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, ...,
A024794: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, ...
		

Crossrefs

Programs

  • Mathematica
    (* First do ) Needs["Combinatorica`"] (* then *) f[n_, m_] := Count[Flatten@ Partitions@ n, m]; Table[ f[n, m], {n, 13}, {m, n, 1, -1}]
Previous Showing 11-12 of 12 results.