A110103
a(n) is the number of 2-regular 4-hypergraphs on 2n labeled vertices. (In a r-hypergraph, each hyper-edge is a proper r-set; k-regular implies that each vertex is in exactly k hyperedges.)
Original entry on oeis.org
1, 0, 0, 15, 1855, 469980, 214402650, 160081596675, 182667234224475, 302414315250247200, 697372026302486234700, 2167773244010692751057625, 8842276105055583472501844625, 46275602006744820263447546152500
Offset: 0
One of the 15 2-regular 4-hypergraphs on 6 vertices: {{1234},{4561}, {2356}}.
A318148
Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -34, 35, 0, 11056, -16830, 5775, 0, -14873104, 27560780, -15315300, 2627625, 0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625, 0, -495812444583424, 1140896479608800, -948030209181000, 364143337057500, -65706427536750, 4509264634875
Offset: 0
[0] [1]
[1] [0, 1]
[2] [0, -34, 35]
[3] [0, 11056, -16830, 5775]
[4] [0, -14873104, 27560780, -15315300, 2627625]
[5] [0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625]
All row sums are 1, alternating row sums (taken absolute) are
A211212.
-
# See A318146 for the missing functions.
FL([seq(CL(OmegaPolynomial(4, n)), n=0..8)]);
-
(* OmegaPolynomials are defined in A318146 *)
Table[CoefficientList[OmegaPolynomial[4, n], x], {n, 0, 6}] // Flatten
-
# See A318146 for the function OmegaPolynomial.
[list(OmegaPolynomial(4, n)) for n in (0..6)]
A361948
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} binomial((j + 1)*n - 1, n - 1) if n >= 1, and A(0, k) = 1 for all k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 280, 105, 1, 1, 1, 1, 126, 5775, 15400, 945, 1, 1, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, ...
[1] 1, 1, 1, 1, 1, 1, ...
[2] 1, 1, 3, 15, 105, 945, ... A001147
[3] 1, 1, 10, 280, 15400, 1401400, ... A025035
[4] 1, 1, 35, 5775, 2627625, 2546168625, ... A025036
[5] 1, 1, 126, 126126, 488864376, 5194672859376, ... A025037
[6] 1, 1, 462, 2858856, 96197645544, 11423951396577720, ... A025038
.
Triangle A(n-k, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 1, 1;
[3] 1, 1, 1, 1;
[4] 1, 1, 3, 1, 1;
[5] 1, 1, 10, 15, 1, 1;
[6] 1, 1, 35, 280, 105, 1, 1;
- Cyril Banderier, Philippe Marchal, and Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
- Antoine Chambert-Loir, Combinatorics of partitions, blog post 2024.
- Alexander Karpov, Generalized knockout tournament seedings, International Journal of Computer Science in Sport, vol. 17(2), 2018.
-
A := (n, k) -> mul(binomial((j + 1)*n - 1, n - 1), j = 0..k-1):
seq(seq(A(n-k, k), k = 0..n), n = 0..9);
# Alternative, using recursion:
A := proc(n, k) local P; P := proc(n, k) option remember;
if n = 0 then return x^k*k! fi; if k = 0 then 1 else add(binomial(n*k, n*j)*
P(n,k-j)*x, j=1..k) fi end: coeff(P(n, k), x, k) / k! end:
seq(print(seq(A(n, k), k = 0..5)), n = 0..6);
# Alternative, using exponential generating function:
egf := n -> ifelse(n=0, 1, exp(x^n/n!)): ser := n -> series(egf(n), x, 8*n):
row := n -> local k; seq((n*k)!*coeff(ser(n), x, n*k), k = 0..6):
for n from 0 to 6 do [n], row(n) od; # Peter Luschny, Aug 15 2024
-
A[n_, k_] := Product[Binomial[n (j + 1) - 1, n - 1], {j, 0, k - 1}]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 13 2023 *)
-
def Arow(n, size):
if n == 0: return [1] * size
return [prod(binomial((j + 1)*n - 1, n - 1) for j in range(k)) for k in range(size)]
for n in range(7): print(Arow(n, 7))
# Alternative, using exponential generating function:
def SetPolyLeadCoeff(m, n):
x, z = var("x, z")
if m == 0: return 1
w = exp(2 * pi * I / m)
o = sum(exp(z * w ** k) for k in range(m)) / m
t = exp(x * (o - 1)).taylor(z, 0, m*n)
p = factorial(m*n) * t.coefficient(z, m*n)
return p.leading_coefficient(x)
for m in range(7):
print([SetPolyLeadCoeff(m, k) for k in range(6)])
A211311
a(n) = number |fdw(P,(n))| of entangled P-words with s=4.
Original entry on oeis.org
1, 68, 34236, 62758896, 304863598320, 3242854167461280, 66429116436728636640, 2389384600126093124110080
Offset: 1
A334061
Triangle read by rows: T(n,k) is the number of set partitions of {1..4n} into n sets of 4 with k disjoint strings of adjacent sets, each being a contiguous set of elements.
Original entry on oeis.org
1, 0, 1, 31, 4, 0, 5474, 292, 9, 0, 2554091, 72318, 1206, 10, 0, 2502018819, 43707943, 438987, 2871, 5, 0, 4456194509950, 52717010017, 351487598, 1622954, 4355, 1, 0, 13077453070386914, 111615599664989, 528618296314, 1764575884, 4080889, 4385, 0, 0
Offset: 0
Triangle begins:
1;
0, 1;
31, 4, 0;
5474, 292, 9, 0;
2554091, 72318,1206, 10, 0;
...
For n=2 and k=1 the configurations are (1,6,7,8),(2,3,4,5), as well as (1,2,7,8),(3,4,5,6) and also (1,2,3,8),(4,5,6,7) (i.e. configurations with a single contiguous set) and (1,2,3,4),(5,6,7,8) (i.e. two adjacent contiguous sets); hence T(2,1) = 4.
-
CoefficientList[Normal[Series[Sum[y^j*(4*j)!/24^j/j!*((1-y*(1-z))/(1-y^2*(1-z)))^(4*j+1), {j, 0, 20}], {y, 0, 20}]], {y, z}]
-
T(n)={my(v=Vec(sum(j=0, n, (4*j)! * x^j * (1-(1-y)*x + O(x*x^n))^(4*j+1) / (j! * 24^j * (1-(1-y)*x^2 + O(x*x^n))^(4*j+1))))); vector(#v, i, Vecrev(v[i], i))}
{ my(A=T(8)); for(n=1, #A, print(A[n])) }
Comments